MOBILE COMPUTING

MOBILE COMPUTING

EDITED BY

Henry F. KORTH
Matsushita Information Technology Laboratory

Princeton, New Jersey

Tomasz IMIELINSKI
Rutgers University

New Brunswick, New Jersey

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht

CONTENTS

THE PARCTAB UBIQUITOUS COMPUTING
EXPERIMENT

Roy Want, Bill N. Schilit, Norman I. Adams, Rich
Gold, Karin Petersen, David Goldberg, John R. Ellis,
Mark Weiser

INTRODUCTION

UBIQUITOUS COMPUTING

PARCTAB SYSTEM DESIGN

USER-INTERFACE DESIGN FOR PALM-SIZED COM-
PUTERS

PARCTAB SYSTEM ARCHITECTURE

6 DEVELOPING SYSTEM AND APPLICATION COMPO-
NENTS

7 A CLASSIFICATION OF PARCTAB APPLICATIONS
8 EXPERIENCES WITH THE PARCTAB SYSTEM
9 CONCLUSION

= W N =

ot

D W = =

13
19

27
31
37
47

vi

MoBILE COMPUTING

1

THE PARCTAB UBIQUITOUS
COMPUTING EXPERIMENT

Roy Want, Bill N. Schilit,
Norman I. Adams, Rich Gold, Karin Petersen,

David Goldberg, John R. Ellis, Mark Weiser

Xerox Palo Alto Research Center, Palo Alto, California, USA

ABSTRACT

The PARCTAB system integrates a palm-sized mobile computer into an office
network. This project serves as a preliminary testbed for Ubiquitous Comput-
ing, a philosophy originating at Xerox PARC that aims to enrich our computing
environment by emphasizing context sensitivity, casual interaction and the spa-
tial arrangement of computers. This paper describes the Ubiquitous Computing
philosophy, the PARCTAB system, user-interface issues for small devices, and
our experience developing and testing a variety of mobile applications.

1 INTRODUCTION

For the past 30 years the operating speed and component density of digital
electronics has steadily increased, while the price of components has steadily
decreased. Today, designers of consumer goods are incorporating digital elec-
tronics into more and more of their products. If these trends continue, as we
expect they will, many everyday items will soon include some form of computer.

Although computers are becoming ever more common in appliances such as
VCRs, microwave ovens, and personal digital assistants, they remain largely
isolated from one another and from more powerful desktop and laptop ma-
chines. We believe that in the future many computers will provide more valu-
able services in combination than they can in isolation. Ideally, many kinds

I This work was supported by Xerox and ARPA under contract DABT63-91-C-0027. Por-
tions of systems described here may be patented or patent pending.

2 CHAPTER 1

of specialized machines will work together via networks to let users access and
control information, computation and their physical and electronic environ-
ments.

In the Computer Science Laboratory (CSL) at Xerox PARC we have estab-
lished a number of research projects to explore this vision, which we call Ubig-
uitous Computing. This paper presents the results of the PARCTAB project,
an experiment intended to clarify the design and application issues involved
in constructing a mobile computing system within an office building. The
PARCTAB system provides a useful testbed for some of the ideas of the Ubiqui-
tous Computing philosophy, which is described briefly in the next section. The
system is based on palm-sized wireless PARCTAB computers (known generi-
cally as “tabs”) and an infrared communication system that links them to each
other and to desktop computers through a local area network (LAN). Although
technological and funding limitations forced us to make numerous compromises
in designing the PARCTAB hardware, nevertheless the system, as described in
Section 3, meets most of our design goals. Likewise the small size and low res-
olution of the PARCTAB displays requires an innovative user interface design
to allow efficient text entry and option selection. Our solutions are presented
in Section 4.

A community of about 41 people at Xerox PARC take part in the system’s
operation and in PARCTAB application development, which are covered in some
detail in Sections 5 and 6. To date, we have developed and tested more than
two dozen PARCTAB applications that allow users to access information on
the network, to communicate through paging and e-mail, to collaborate on
shared drawings and texts, and even to monitor and control office appliances.
Descriptions of the various PARCTAB applications as well as data on users’
experiences with them are given in Sections 7 and 8, respectively.

By designing, constructing, and evaluating a fully operational mobile comput-
ing system and developing applications that exploit its unique capabilities, we
have gained some insight into the practical benefits and real-world problems of
such systems. In the paper’s final section, we collect these lessons and present
some of the many intriguing ideas that the PARCTAB project has spawned for
future work in Ubiquitous Computing.

The ParcTab Ubiquitous Computing Experiment 3

2 UBIQUITOUS COMPUTING

As inexpensive computers add limited intelligence to a wider variety of everyday
products, a new model of computing becomes possible.

2.1 The Ubiquitous Computing Philosophy

This new technology aims for the flexibility of a far simpler and more ubiquitous
technology: printed text. Depending on the need, print can be large or small,
trivial or profound, verbose or concise. But though print surrounds us in myriad
forms, it does not dominate our thoughts the way computers do today. We do
not need to log on to road signs to use them or turn away from our colleagues
to jot notes on a pad of paper. Similarly, ubiquitous computers would demand
less of our concentration than present commercial computer interfaces that
require users to sit still and focus their attention. Yet through casual interaction
they would provide us with more information and all the advantages of an
intelligently orchestrated and highly connected computer system.

Creating such an intuitive and distributed system requires two key ingredients:
communication and context. Communication allows system components to
share information about their status, the user and the environment—that is,
the context in which they are operating. Specifically, context information might
include such elements as:

m The name of the user’s current location;
m The identities of the user and of other people nearby;

m The identities and status of the nearby printers, workstations, Liveboards,
coffee machines, etc.;

m Physical parameters such as time, temperature, light level and weather
conditions.

The combination of mobile computing and context communications can be a
powerful one [40, 29, 27, 31, 32, 30]. Consider, for example, an employee who
wants to show a set of figures to his manager. As he approaches her office, a
quick glance at his tab confirms that the boss is in and alone. In the midst
of their conversation, the employee uses the tab to locate the data file on the
network server and to request a printout. The system sends his request by

4 CHAPTER 1

default to the closest printer and notifies him when the job is finished. Many
more examples of the Ubiquitous Computing philosophy are presented in Mark
Weiser’s article “The Computer of the 21st Century” [39].

2.2 A Ubiquitous Computing Infrastructure

Attaining the goals of Ubiquitous Computing will require a highly sophisticated
infrastructure. In the ideal system, a real-time tracking mechanism will derive
the locations and operational status of many system components and will use
that context to deliver messages more intelligently. Users will be able to choose
from among a variety of devices to gain mobile, high-bandwidth access to data
and computational resources anywhere on the network. These devices will
be intuitive, attractive and responsive. They will automatically adapt their
behavior to suit the current user and context.

Although one can speculate about the design of a future system, unfortunately
the components needed to build such an infrastructure have yet to be invented.
Current processors and microcontrollers are slow and power-hungry compared
to their likely descendants 10 years from now. We reasoned that we could
bridge this technology gap by constructing an operational system that resembles
an optimal design. Despite the inevitable compromise of some engineering
characteristics, we could then use the system to assess the advantages and
disadvantages of Ubiquitous Computing as if we had glimpsed into the future.

It is impossible to predict the range of device forms and capabilities that will
be available a decade from now. We therefore based our device research on
size, a factor that is likely to continue to divide computers into functional
categories. A useful metaphor that highlights our approach is to consider the
traditional English units of length: the inch, foot and yard. These units evolved
because they represent three significantly different scales of use from a human
perspective.

m Devices on the inch scale, in general, can be easily attached to clothing or
carried in a pocket or hand.

m Foot-sized devices can also be carried, though probably not all the time.
We expect that office workers will use foot-sized computers similar to the
way that they use notebooks today. Some notebooks are personal and are
carried to a particular place for a particular purpose. Other notepads are

The ParcTab Ubiquitous Computing Experiment)

scattered throughout the work environment and can be used by anyone for
any purpose.

m In the future office there will be computers with yard-sized screens. These
will probably be stationary devices analogous to whiteboards today.

2.3 Ubiquitous Computing Experiments at
PARC

Researchers at PARC have built computer systems at the three scales described
above [41]:

inch PARCTAB, a palm-sized computer;
foot PARCPAD, an electronic notepad;
yard Liveboard, an electronic whiteboard.

These experimental devices use different mechanisms for communication and
computation within the building’s distributed system. The Liveboard is not
mobile and connects directly to an Ethernet. Our mobile devices extend battery
life by using low-power communication technologies: infrared (IR) signalling
for the PARCTAB and near-field radio [6] for the PARCPAD. We have also
investigated how operating system design can reduce power consumption [43]
and this is well suited to mobile computers. The PARCPAD and Liveboard are
described elsewhere by Kantarjiev [16, 11] and Elrod [8].

Our goals for the PARCTAB project were:

m To design a mobile hardware device, the PARCTAB, that enables personal
communication;

m To design an architecture that supports mobile computing;
m To construct context-sensitive applications that exploit this architecture;

m To test the entire system in an office community of about 41 people acting
as both users and developers of mobile applications.

6 CHAPTER 1

3 PARCTAB SYSTEM DESIGN

We set several design goals for the PARCTAB hardware. It had to be physically
attractive to users, compatible with the network, and capable of modifying
its behavior in response to the current context. We believed that in order to
fulfill these goals the PARCTAB had to be small, light and aesthetically pleasing
enough that users would accept it as an everyday accessory. It needed reliable
wireless connectivity with our existing networks and a tracking mechanism
capable of detecting its location down to the resolution of a room. It had to
run on batteries for at least one day without recharging.

We also believed that the PARCTAB’s user interface had to let people make
casual use of the device, even if they had only one free hand. The screen had to
be able to display graphics as well as text. We wanted users to be able to make
marks and selections using electronic ink, so the screen needed touch sensitivity
with a resolution at least equal that of the display. Furthermore, the cost of
the hardware and the network infrastructure had to be within reasonable limits
so that we could deploy the system for lab-wide use.

Cost was not the only limitation on our design options. Some factors were also
limited by available technology, such as the device’s communication bandwidth,
display resolution, processor performance and battery capacity.

3.1 PARrRcCTAB Mobile Hardware

We carefully weighed the limitations and requirements above when making the
engineering decisions that shaped the final appearance (Figure 1) and func-
tionality of the PARCTAB hardware. One primary trade-off balanced weight,
processor performance, and communications bandwidth against battery life.
We also had to strike a compromise between screen resolution and the device’s
size, cost and processor speed.

Packaging

We believed an ergonomic package would be essential if people were to carry and
use the tab regularly. We thus enclosed the PARCTAB in a production-quality
custom plastic case with a removable belt clip. The tab is about half the size
of current commercial personal digital assistants (PDAs), at 10.5cm x 7.8cm
X 2.4cm (4.1in x 3.0in x 0.95in). It weighs 215g (7.50z). We designed the tab
so that users could choose either one-handed use with buttons or two-handed

The ParcTab Ubiquitous Computing Experiment 7

use with a stylus. Because the package is symmetric, the tab can be used in
either hand—an important feature for left-handers who wish to use the stylus.
To convert from right- to left-handed use, the user executes a setup command
that rotates the display and touch-screen coordinates by 180 degrees.

Display and Control Characteristics

We found that commercially available touch-sensitive displays provided ade-
quate resolution for our needs. We chose a 6.2cm x 4.5cm (2.4in x 1.8in) LCD
display with a resolution of 128 x 64 monochrome pixels.

The PARCTAB is most easily operated with two hands: one to hold the tab,
the other to use a passive stylus or a finger to touch the screen. But since
office workers often seem to have their hands full, we designed the tab so that
three mechanical buttons fall beneath the fingers of the same hand that holds
the tab (see Figure 1), allowing one-handed use. The device also includes a
piezo-electric speaker so that applications can generate audio feedback.

Figure 1 The PARCTAB mobile hardware

8 CHAPTER 1

Power Management

Power is the overriding concern that drives most of the design decisions of most
small electronic devices, and the PARCTAB is no exception. With more power,
there could be faster communication over longer distances, higher-resolution
displays, and faster processors. But existing battery technology places stringent
limits on the power available for such small components.

We found the prismatic (rectangular) Nicad cell to be the most suitable bat-
tery technology given our size, weight and performance goals. Four cells were
sufficient to provide a rechargeable power source for the tab while meeting
all the packaging requirements. We designed the core of the device around a
12MHz, 8-bit microcontroller (87C524), an Intel 8051 derivative, for two rea-
sons. First, its on-board EPROM, RAM and I/O ports ensured a compact
design. But equally important, this processor can be programmed to enter a
low-power mode. The PARCTAB takes advantage of this mode when idle in or-
der to extend battery life. The display, touch screen, additional RAM and the
communication electronics can also be powered down by the microcontroller.

During normal operation a tab consumes 27mA at 5V. In low-power mode it
consumes less than 30uA. We considered nominal use to be 10 minutes per hour,
eight hours per working day. In operation, however, we found that the one-
day use requirement was easily met. In fact, using a battery storage-capacity
of 360mAh, the typical tab need only be charged once per week. A smaller
battery may suffice, in which case we estimate that the PARCTAB could be
reduced to one-third of its current weight and volume if it were produced today
by a commercial electronics company instead of a research lab. We anticipate
that within a few years the functions of the PARCTAB probably could be put
into a watch.

3.2 ParcTaB Communication

Limited space and power constrained our choice of a wireless communication
technology to just two options: radio and infrared (IR). We chose 880nm IR to
exploit the small, inexpensive IR components that were commercially available.
These offered low power consumption at the modest communication speeds of
9600 and 19200 baud. Because IR signals are contained by the walls of a room,
this technology also made it easier to design a cellular system. Moreover, IR
communication is unregulated. A radio link would have required more space,
higher power equipment and potentially government operating licenses.

The ParcTab Ubiquitous Computing Experiment 9

We decided that a cellular system [5] would best handle the competition for
bandwidth that inevitably would arise in a building-wide system supporting
many users. By creating small, room-sized communication cells (nanocells), we
could minimize the communication distance from the hub to the mobile user,
reducing power needs concomitantly. Since the radiated signal would be blocked
by walls, messages would be more secure than if they were broadcast widely.
Users are also less likely to interfere with one another’s signals in a cellular
system, although some situations—such as heavy tab use during a break in a
large meeting—can still place large loads on the IR transceivers. Finally, small
cells enable the system to pin down a user’s location to the resolution of a room.

The tab infrared network [1, 26] thus consists of nanocells defined by the walls
of a room surrounding an IR transceiver. Large open rooms and hallways may
also support nanocells if transceivers are carefully placed out of communication
range of each other. Transceivers connect to a LAN through the RS-232 ports
of nearby workstations.

Transceiver Design

A transceiver serves as a communication hub for any PARCTABs located in its
particular cell. Typically its communication radius is about 20 feet—less if
limited by the walls of an office. The transceiver hardware performs numerous
functions in addition to transmission and reception, including:

m Coding and decoding infrared packets;

m Buffering data;

m Executing link-level protocol checks (e.g., format or checksum);
m Providing a serial interface to a workstation’s RS-232 port;

m Indicating visually its communication status.

We designed the transceiver conservatively to ensure reliable communication.
For transmission, two dozen IR emitters are placed at 15 degree intervals on
a circular printed circuit board. For reception, two detectors provide a total
viewing angle of 360 degrees (Figure 2). The transceiver is designed to be at-
tached to a ceiling, preferably in the middle of a room as this usually gives an
unobscured communication path over the required area. But since transceivers

10 CHAPTER 1

and PARCTABs can sense infrared light reflected from surfaces, it is not neces-
sary that there be a line of sight between the two for them to communicate.
Thus a single transceiver usually covers a room completely.

Figure 2 The PARCTAB transceiver

Local Area Network Interface

We found the approach of extending an existing LAN to provide wireless
nanocellular communication very attractive for a number of reasons. The addi-
tional cost is small because the LAN wiring already exists. Most offices in our
building are equipped with at least one workstation that has a spare RS-232
port. We thus had to string only a small amount of additional phone cable to
connect ceiling-mounted transceivers to our UNIX workstations and, through
them, the ethernet. And since well established communication mechanisms
already exist between workstations in commercial distributed systems, we did
not have to reinvent that infrastructure. Transceivers could be attached to
networks of other platforms, such as the PC or Macintosh, in much the same
way.

The ParcTab Ubiquitous Computing Experiment 11

Transmission Control

The decision to use infrared communication prompts a further design issue:
how to enable many PARCTABs to share the medium? Conventional IR detec-
tors have difficulty tuning narrow frequency ranges, ruling out the possibility
of using frequency-division multiplexing to divide the bandwidth into several
subchannels. We thus chose a simple digital packet-contention scheme that
shares the medium using time-division multiplexing.

In this scheme, all data is bundled into packets formed by the baseband mod-
ulation of an IR carrier into a sequence of pulses. The pulses are uniform—
all have a duration of 4us—but the gaps between them are not. The variable
duration of the silence between pulses encodes the data bits. The durations of
the gap encoding a logic 1, logic 0, packet-start synchronization, and data-byte
synchronization are all unique and may be decoded using a simple algorithm.
By defining data as the absence of a signal, this technique minimizes power
consumption, since the infrared carrier is switched off for most of a transmis-
sion.

The link-layer packets are divided into several fields, as shown in Figure 3 below.
The packet type field is always sent at 9600 baud, and a subfield of the packet
type defines the speed at which the rest of the packet will be transmitted. This
permits variable speed transmission and allows future high-speed systems to
remain backward-compatible. The present system transmits packets at 9600
and 19200 baud.

PKT |LENGTH
TYPE |(0-255) DESTINATION SOURCE DATA PAYLOAD Cs
1 1 4 4 3-247 2

Figure 3 Format of the data fields for a link-layer IR packet (lengths in
bytes).

The second field contains the length of the packet. Packets vary in length from
14 bytes for most uplink packets to a maximum of 256 bytes for a downlink
packet. Next follow unique 4-byte addresses of the destination and source
devices, up to 247 bytes of payload data and finally a 2-byte checksum.

We assumed that communications traffic inside a cell would normally be low
since applications are driven by user-generated events, such as button clicks.

12 CHAPTER 1

We thus expected a screen update to be followed by a relatively long si-
lence while the user made the next selection. Because we also assumed that
small packets generated under lightly loaded conditions would be delivered
promptly, we chose to use a symmetric non-persistent carrier-sense multiple-
access (CSMA) protocol to provide access to the IR channel. This protocol
simply uses carrier sense and a random-exponential backoff whenever the chan-
nel is busy. It does not wait for a packet currently occupying the channel to
complete before entering a new backoff period [33].

Reliability and Interference

The PARCTAB system cannot detect packet collisions because any IR transmis-
sion creates such a powerful signal that it saturates the local receiver, making
it impossible to detect a packet sent simultaneously by another device. Mobile
hardware can avoid losing link-layer packets by setting a bit in the packet type
field that requests an acknowledgment. When a transceiver sees the request bit
set, it immediately transmits a reply back to the sender. In a multiple-access
network this type of acknowledgment is quite reliable, since the fact that the
request was received implies that there was no contention and therefore the
acknowledgment should also not encounter contention [36]. A PARCTAB sets
the request bit for some types of tab packets—user events, for example—and
then, if no acknowledgment arrives, resends the packet a fixed number of times
until finally generating an audible alarm to the user. In principle, downlink
packets sent from a transceiver to a PARCTAB could also use this mechanism.
Instead, as described in Section 7, we ensure downlink reliability at a higher
level of protocol.

When a PARCTAB is in view of two rooms—when in a hallway, for instance, with
doors opening into two cells—both cell transceivers might acknowledge event
packets simultaneously, corrupting the acknowledgment signal at the PARCTAB.
To avoid this problem transceivers that are close enough to interfere with each
other are given different network addresses and only acknowledge packets ad-
dressed to them, although they still transfer all the packets that they receive
to the LAN. Whenever a PARCTAB enters a new cell the system notices events
that it produces (e.g., beacons or button clicks) and instructs the tab to use a
new transceiver address.

The ParcTab Ubiquitous Computing Experiment 13

4 USER-INTERFACE DESIGN FOR
PALM-SIZED COMPUTERS

As we developed applications for the PARCTAB, it became clear that a tradi-
tional user interface designed for the 640 x 480-pixel color display of a typi-
cal PC or workstation would not work well on the PARCTAB’s 128 x 64-pixel
monochrome display [25, 42]. Indeed, the PARCTAB’s tiny screen, offering less
than half the area of most PDA displays, forced us to devise innovative ways
to select, display and enter information in a very limited space. As advancing
technology produces higher resolution displays that can pack more information
onto a small screen, some of the problems we faced will undoubtedly disappear.
But text and symbols can shrink only so much before they become too small
to read. Also, as displays increase in resolution, new devices will probably
get commensurately smaller. Many of the user-interface solutions we describe
below will thus remain relevant.

4.1 Buttons vs. Touch Screen

Since the PARCTAB is well suited for casual, spur-of-the-moment use, we did
not want to compel users to free both hands to operate the device. The user
interface thus had to allow users to control applications with the device’s three
buttons, its touch screen or a combination of both. This requirement compli-
cated the interface design because a user selecting an item on the screen with
the buttons alone must then be presented with an intermediate screen allowing
her to invoke an operation on that item. Consequently, application developers
must decide whether to require two-handed use (of both stylus and buttons)
or whether to increase the number of screens in their program so that all the
functions can be accessed via the buttons.

We found one convention that seems to solve this problem best, and developers
incorporated it into several tab applications. It works as follows: on clicking
the middle push-button, a menu of commands pops-up. The top and bottom
buttons then move the cursor up and down, while a second click of the middle
button selects the command on which the cursor currently rests. On screens
that display scrolls or lists of text, the top and bottom buttons scroll the list
up or down, respectively. If menus are designed intelligently, then users must
usually just click the middle button twice to execute the most common action.
Two-handed users can press an on-screen button to pop up the menu and can
then point with the stylus to select an item directly.

14 CHAPTER 1

We have also settled on a preferred interface style for using the push-buttons
and the stylus to navigate a tree data-structure. The operator uses the stylus
to navigate down through the hierarchy one screen at a time and clicks the
middle button to navigate upward. This method works efficiently because users
descending the hierarchy must at each level make a choice, a task performed
simplest with the stylus. Ascending the tree, on the other hand, requires a
user to repeat the same operation over and over, a task well suited to repeated
push-button action.

4.2 Spurious Event Prevention

Because the PARCTAB applications often run elsewhere on the network there
can be modest delays between a button click or screen touch and the update of
the screen 5. The delay between event and response can occasionally cause er-
rant behavior in the user interface. Consider the case in which a menu contains
a button icon that selects another screen with its own button icon in a similar
position. A user tapping the first button with the stylus might create multiple
pen-events, either by unintentionally bouncing the pen on the touch surface
or by impatiently tapping the button twice. The initial event will trigger a
transition to the next screen, but the latter events could then cause additional,
unwanted selections. We solved this problem by adding a field called an epoch
to the event packet structure. Every time an application transmits a screen
change, it also increments the epoch number in the PARCTAB. Any events that
were in the application input queue with a previous epoch number can now be
discarded, thus preventing any spurious transitions.

4.3 Text Display

We anticipated that it might be difficult to read text on the PARCTAB because
its small display can show only eight lines of 21 (6 x 8-pixel) characters. In
practice, this proved not to be a problem, as our popular e-mail application
exemplifies. Word-wrap and hyphenation algorithms can often fit three or four
words across the screen. The 8-line display is also small enough to update
quickly despite the limited communication bandwidth.

Users scroll through text either by clicking the top or bottom push-buttons or
by touching the upper or lower half of the display. The experience is similar
to reading a newspaper column through a small window that can be moved
up or down by the flick of a pen. Although this is relatively efficient, it is

The ParcTab Ubiquitous Computing Experiment 15

nevertheless often useful to filter text information before it is displayed. For
example, the PARCTAB e-mail application replaces lengthy message headers
with a compressed form that includes only the sender and an abbreviated form
of the subject field.

4.4 Text Entry

We experimented with two methods of text entry: graphic, onscreen keyboards
and Unistrokes, a novel approach to handwriting recognition. Unistrokes [13]
is similar to Graffiti, a system marketed subsequently by Palm Computing.

Keyboard Entry

An onscreen keyboard requires both an array of graphic keys arranged in type-
writer format and an area to display text as it is entered. We have experi-
mented with several layouts. The first presents key icons across lines 2 through
8 of the screen and displays the characters that have been “typed” on line 1,
which scrolls left and right as necessary to accommodate messages longer than
21 characters. A delete-last-character function bound to the PARCTAB’s top
push-button allows easy correction of mistakes. One of the other push-buttons
serves as a carriage return that terminates an entry. We found that users could
enter about two characters per second using this keyboard layout. Experiments
with smaller keyboards show that they lower typing accuracy.

bt = === — [J | J/7u
a b c¢c d e f g h i j k | m

ME o\ S— 1t I N8 2
n o

P g r s t u v wXx y z

Figure 4 The Unistroke alphabet

Unzistrokes

Techniques for handwriting recognition have improved in recent years, and are
used on some PDAs for text entry. But they are still far from ideal since they
respond differently to the unique writing characteristics of each operator. We

16 CHAPTER 1

have experimented on the PARCTAB with Unistrokes, which depart from the
traditional approach in that they require the user to learn a new alphabet—one
designed specifically to make handwriting easier to recognize.

For each letter in the English alphabet there is a corresponding Unistroke char-
acter which can be drawn in a single pen stroke. The direction of the stroke
is significant (Figure 4). To minimize the effort required to learn to write in
Unistrokes, all Unistroke characters are either identical to English letters (e.g.,
L, S and Z) or are based on a characteristic feature of the corresponding English
letter (e.g., the cross of T). We found that most people can learn the Unistroke
alphabet in under an hour.

Because Unistroke characters are directional and better differentiated than En-
glish letters, they require less processing to recognize reliably. Because the
characters are single strokes, users can draw each Unistroke character right on
top of the previous one, using the entire screen. Thus the strokes themselves
need not appear on the writing surface, but instead the PARCTAB neatly dis-
plays the corresponding English characters. Practiced Unistrokers found the
simplicity and speed of text entry very attractive.

4.5 Option Selection

The PARCTAB’s small screen makes it difficult to present users with a long list
of options. We tried a number of different methods.

Text and Icon menus

The PARCTAB screen size places rather severe limits on the number of text or
icon options in a menu. Vertically, eight lines of text fit onscreen. Spreading
three text buttons per line across the display increases the number of selections
to 24. Arranging 16 x 16-pixel icons in an uncluttered format yields about 15
options per screen (see Figure 1). Larger lists require alternative approaches.

Scrolling Lists

Some applications, including Tabmail and Arbitron (Figure 5), present choices
in a scrolling list with each option represented by a single line of text. The item
on which the cursor rests is highlighted; options that are unavailable because
they do not make sense in the current context are crossed out. As users press

The ParcTab Ubiquitous Computing Experiment 17

the top and bottom push-buttons to move the cursor up and down, the list
scrolls as necessary to expose more options.

Figure 5 A screen from the PARCTAB Arbitron application

We considered using the “proportional” scroll bars common in PC user in-
terfaces to allow fast touch-screen navigation of large ordered lists on the
PARCTAB. This scheme takes the horizontal or vertical position of a screen
touch as a percentage of the total screen dimension, then moves the cursor to
a similar position in the long list of options. Unfortunately, we found that the
resolution of the touch-screen restricts accurate selection to lists smaller than
the maximum number of pen positions that can be resolved. The PARCTAB
can resolve 128 horizontal positions per line.

We also chose not to use this type of interface element because it demands
continuous display feedback for each movement of the pen. Typically the feed-
back would be generated remotely, rather than by the tab itself, because the
application generating the feedback is running elsewhere on the network. The
contention that would result between pen events and continuous display up-
dates would make poor use of the communication bandwidth.

Elision and Incremental Searches

We used the PARCTAB to evaluate the efficiency of two somewhat more so-
phisticated methods for selecting one item (such as a name or word) from a
large ordered list (such as a directory or dictionary): elision and incremental
searching. Elision is based on k-ary search techniques. The system divides the
list into 15 portions of roughly equal size and displays the first item in each

18 CHAPTER 1

section, followed by an ellipsis (Figure 6). The display ends with the last item
in the list.

Figure 6 A screen from the PARCTAB locator application

The user selects the target item if it is displayed. Otherwise, selecting any
ellipsis redraws the screen to show an expansion of the selected region of the
list into 13 smaller portions as before. (The very first and last items in the
complete list are always displayed so that users can navigate back to other
regions.) The user continues “zooming in” on a particular region until the
target item appears.

Elision is reasonably efficient. Because the PARCTAB screen can display 16
abbreviated words with ellipses between them, users need make at most log;
N selections to reach any item, where N is the size of the list. To select one
item among one million, for example, requires no more than six selections. The
mean word length in the American Heritage online dictionary, containing 84433
words, is 8.9 characters. A user typing a word from this dictionary on a graphic
keyboard must thus make 8.9 selections, on average. Elision, by comparison,
can bring up any word in this dictionary with just four selections.

Incremental search techniques, implemented in the PARCTAB dictionary ap-
plication, can do nearly as well. Here the user types the first few letters of
the item. With each letter entered, the application narrows the list of possible
matches and displays the closest eight. We found that this method identified
the desired word after 4.3 characters on average—thus 5.3 selections, since one
more tap is needed to choose the correct match from the eight choices.

PARCTAB applications have made successful use of both elision and incremental
searches. We observed advantages and disadvantages for each. Elision is the

The ParcTab Ubiquitous Computing Experiment 19

more general method, since it performs well even when the ordered list has no
special properties. It also usually requires fewer selections—especially if it is
refined so that the system adjusts the size of the subsections to fall between
guide words that have been frequently selected. Many PARCTAB users object
to elision, however, because it demands hard thinking to pick the appropriate
ellipsis.

5 PARCTAB SYSTEM ARCHITECTURE

A multilayer system architecture integrates the PARCTAB hardware into the
PARC office network so that network applications can easily control and re-
spond to mobile devices based on the devices’ current context. Although the
PARCTABs themselves behave more like terminals than independent comput-
ers, they do execute local functions in response to remote procedure calls.
PARCTABs also generate events that are then forwarded by transceivers and
the infrared gateways that manages them to processes called tab agents, which
run on network machines. The agents keep track of the mobile tabs and link
them to workstation-based applications. PARCTAB applications are generally
event-driven, much like X11 or Macintosh programs. Figure 7 illustrates re-
lationships among PARCTABs, transceivers, gateway and agent processes, and
applications.

Developers can link into their applications a code library that hides the details
of PARCTAB tracking, message routing, and error recovery. Of course, any
application can obtain a tab’s current location as needed so that the program
can modify its behavior appropriately. We developed the PARCTAB system in
the Unix programming environment (SunOS 4.3.1) running on SparcStation 2
connected by an ethernet. Communication between Unix processes is achieved
using Sun RPC.

5.1 PARCTAB Processing Capabilities

One perennial issue in distributed systems design is the question of partitioning:
how much computation should be performed by the mobile devices, and how
much by larger computers fixed to the network. One alternative is to execute
much of an application’s interface locally in the mobile client, similar to the
way America Online, Compuserve and Prodigy put most of their user interface

20 CHAPTER 1

TAB 1
AGENT
GATEWAY w
- .| TAB2
Conference Room AGENT @
?
B L (o)
GATEWAY
TAB 3
Bill’s Office AGENT [T—u. @
IR - - E
GATEWAY
. TAB 4
Infrared ParcTab
ParcTab Transceiver Gateway Ethernet Agent Applications

Figure 7 The PARCTAB system architecture

onto users’ PCs. At the extreme defined by PDAs, a tab might even run whole
applications and communicate only occasionally with the network.

Although this approach might reduce the load on the IR channel, it requires
a fast processor and much memory. But using today’s technology, the power
requirements of state-of-the-art CPUs cannot be satisfied by conventional bat-
teries of reasonable size and weight. With a 12MHz processor and 128Kb of
memory, the PARCTAB is roughly equivalent in computational power to a PC
from the early 1980s. To date, we have thus used tabs primarily as input/output
devices that rely on workstation-based applications for most computation. In
this model the mobile computer becomes a display device similar to a more
conventional graphics terminal. Recently, however, we have experimented with
a few applications that execute solely in the tab: taking notes using Unistrokes,
for example, and browsing files downloaded from the network.

The ParcTab Ubiquitous Computing Experiment 21

Tab Remote Procedure Call Mechanism

A simple communication mechanism called a tab remote procedure call (T-
RPC) allows applications to control various PARCTAB resources, such as the
display, touch screen, local memory and tone generator, while remaining obliv-
ious to a tab’s location and any underlying communication errors. This mecha-
nism has been incorporated into a library of procedures available to application
designers. When an application makes a call into the library, the library as-
sembles a request packet in a format defined by a request/reply protocol.

FUNCTION
PAYLOAD | SEQUENCE
TYPE NUMBER CODE LENGTH | PARAMETERS MORE FUNCTIONS END
1 1 1 1 0-242 1

Figure 8 Format of IR packet data payload as used by the request/reply
protocol (lengths in bytes)

The request/reply protocol is contained in the data payload of the link-layer
packet (Figure 8). The tab supports a set of about 30 function codes, several
of which can be combined into a single packet. For efficiency multiple function-
requests can be batched into a single packet under program control. A few
examples of PARCTAB functions are: display_text, display_bits, generate_tones,
set_epoch and wake_up.

An application delivers the request packet to a tab’s agent process, which for-
wards iet in turn to the tab. The application then waits for a reply. When
the PARCTAB finishes executing the request, it returns a reply packet to the
application containing an indication of its success and any appropriate results.

Sometimes a request or reply packet will be lost, or the system will be tem-
porarily unable to determine the location of a tab. In that case, the agent will
automatically time-out the reply and will retry the request at intervals defined
by an exponential back-off algorithm. The back-off algorithm takes into ac-
count whether the tab is detected by the network or not, and whether the tab
is free or busy executing another T-RPC request.

Only when a request is matched up with a corresponding reply will the the
application continue. The agent increments the sequence number for each new
request to ensure that retried packets do not inadvertently execute a request
twice. The agent likewise discards duplicate replies that result from retries or

22 CHAPTER 1

detection by multiple transceivers. Figure 9 shows the complete path taken by
a T-RPC call made from an application to a tab and back again.

2
> 4
T | 94YYUNRPC | @@ oI __
> <SsLJN RPC REQUEST™ |
APPLICATION| _SUN RPC AGENT | 6 | IRGATEWAY TAB
- - REPLY
8 SUN RPC,_| - "ol
7 5

1
- — ~ BenT
APPLICATION| SUN RPC AGENT SUN RPC | IRGATEWAY TAB
> > LINK-LAYER
6 4 ACK

Event Notification (Tab to Application Communication)

Figure 9 The path taken by a T-RPC call made from an application to a
tab.

PARCTAB FEvents

When a PARCTAB user presses a button or touches the screen, the device
transmits an event signal. The PARCTAB may also generate certain events
autonomously, such as a low-battery alert and a beacon. The beacon is a signal
transmitted every 30 seconds, even when the device is idling in low-power mode,
that allows the system to continue to monitor a PARCTAB’s location when it
is not active. A similar system has been used to locate people using Active
Badges [38, 10, 14]. The power cost of waking up a tab every 30 seconds to
emit one packet is not high and, in fact, we also designed the tab to listen for a
moment after sending a beacon. If a wake-up request is received in this period
the PARCTAB will power-up completely. The system can thus deliver priority
messages to the device even when it is not in use.

The packet format used to signal PARCTAB events is similar to that used in the
request/reply mechanism. The payload type field distinguishes events, requests
and replies. In event packets, the function code is replaced by the appropriate
event code.

The ParcTab Ubiquitous Computing Experiment 23

5.2 Infrared Gateway

The IR-gateway process controls one or more infrared transceivers connected
to the serial ports of a workstation. The gateway receives IR packets forwarded
by transceivers and delivers them to tab agents. In the reverse direction, the
IR-gateway receives packets from an agent over a local-area network, encodes
them for IR transmission and delivers them to the appropriate serial port.
The transceiver then broadcasts the packets over the IR medium to any tabs
within its cell. These packets are coded according to the request/reply protocol
described in Section 5.1.

The IR-gateway uses a name service to determine which agent should receive
each packet. The gateway looks up the packet’s source addresses (i.e., the tab’s
unique address) in the name-service directory to obtain the network address of
the corresponding agent. Each gateway process maintains a long-lived cache of
agent network address so that it rarely needs to use the name service.

The gateway also appends a return address and a location identifier to every
packet it sends to an agent. The location identifier is a short textual descrip-
tion (e.g., “35-2232”) of the location of the transceiver that received the packet.
Context-sensitive applications can use the identifier in combination with cen-
tralized location databases and services to customize their behavior.

In addition to its main functions, the IR-gateway performs configuration, error-
reporting, and error-recovery functions. Gateway processes also handle the flow
control that matches low-speed infrared communications with the high-speed
local area network.

5.3 Tab Agent

For each PARCTAB there is exactly one agent process, which acts like a switch-
board to connect applications with tabs via IR-gateways. An agent performs
four functions:

m It receives requests from applications to deliver packets to the mobile
PARCTAB that it serves;

= In the reverse direction, it forwards messages (along with location identi-
fiers) from its tab to the current application;

24 CHAPTER 1

m [t provides an authoritative source of tab location information for context-
savvy applications;

m Finally, it manages application communication channels.

Since the agent is an intermediary on all messages, it has the most complete
information on the location of its tab. Even if the PARCTAB moves to a new
cell, its agent will soon receive a beacon signal and update the tab’s location
accordingly. Whenever the tab’s location or status changes, the agent notifies a
centralized location service [28] of the tab’s last known location and its status:
“interactive” if it is being used, “idle” if it is transmitting beacons but no other
events, and “missing” if the tab is out of sight.

An agent also manages which application is allowed access to its tab at a partic-
ular moment. Because the PARCTAB screen is so small, each application takes
over the entire display. Although the tab may run many network applications
over time, only one “current application” can receive events from the tab and
send it messages at a given moment. In our system, a tab’s agent interacts
with a special application called the “shell” (see Section 5.4) to decide which
application is current.

PARCTAB users can currently choose between two shells: the standard shell
described in the next section and an alternative described in Section 6.3.

5.4 Shell and Application Control

The shell is a distinguished application that provides a user interface for launch-
ing or resuming other tab applications.

A tab agent launches a shell when the agent is initialized, and if the shell exits,
the agent automatically restarts it. When it is current, the shell displays an
application menu like that shown in Figure 10 and waits for the user to select
an application. If the user chooses to launch a program, then the shell creates
a new Unix process, registers it with the tab’s agent, and finally instructs the
agent to switch to the new application. Whenever a user suspends or exits a
PARCTAB application, the agent makes the shell the current application.

The shell and other applications communicate with an agent through the Ap-
pControl interface. This interface offers four procedures: register, suspend,
resume, and quit. When an application invokes the ‘suspend’ or ‘quit’ com-

The ParcTab Ubiquitous Computing Experiment 25

Figure 10 The top-level screen presented by the default Shell

mand, the agent switches control back to the shell. When a user chooses to
resume a suspended application or to switch to a newly registered process, the
shell calls the ‘resume’ procedure. If an application locks up in some way,
a PARCTAB user can transmit a special “agent escape” event that forces the
agent to suspend the current application and switch back to the shell.

The shell interface is based on user-customized screens. A screen contains active
regions (called buttons) and graphic labels, both of which may be represented
by text and bitmaps. Buttons invoke built-in actions: jumping to another
screen, starting or resuming an application, playing a tune over the PARCTAB
speaker, etc.

When the shell is started it loads a user’s tabrc initialization file, or a standard
configuration file if that is not present. The contents of the tabrc file define the
buttons, bitmaps, text and active areas that the shell draws on the PARCTAB’s
top-level screen. The shell also looks for a user’s tabrc-personal file and uses
that to extend the menus described by the tabrc file.

The grammar for the files consists of two parts, as shown below. The first
section defines the screen structure displayed on the tab. The second section
contains a list of actions, such as running a certain program, that the shell
performs when it starts up. In this format, the star (“*”) indicates items that
can occur zero or more times; unstarred items occur exactly once.

26 CHAPTER 1

Tabrc — Part*

Part — (Initialize Action*)
— (Screens Screen*)

Screen — (label: Widget*)

Widget — (Text text z y invert)

(TextButton text z y Action)

(Bitmap bitmap-file z y)

(BitmapButton bitrmap-file x y Action)
Action — (Screen label)

(Beep duration octave note ...)

(Program program-args)

(Load tabre-file)

5.5 Example of System Operation

To explain how the PARCTAB system operates in practice, consider the follow-
ing example. A user holding a PARCTAB in Roy’s office presses a button. The
tab transmits a button event packet and requests an acknowledgment.

A transceiver nearby picks up the signal, transmits an acknowledgment back
to the tab, and then forwards the event packet over the serial connection.
The IR-gateway process listening to the serial line receives the packet, extracts
its source address and looks up the network address for the agent associated
with the tab that sent the packet. The gateway stamps the packet with the
transceiver’s location identifier and its own network address, then sends it off
to the agent.

When the agent receives the message, it first verifies that this is not a duplicate
of a previous packet. It then forwards the data to whichever application is
current. The application decodes the event and triggers a procedure call defined
by the application developer.

If, for example, the application wants to update the PARCTAB display, then it
calls a tab library function and the transmission process reverses. First, the
library procedure packs the application’s display data into a T-RPC request
packet and sends the request to the appropriate agent. The procedure also
blocks the application until the call is completed. Next the agent forwards the
packet to whichever IR-gateway sent it a message last.

The IR-gateway encodes the request packet for transmission and sends it over
the serial link to a transceiver, which broadcasts the data over the IR medium.
When the PARCTAB to which the request is addressed receives the packet, it

The ParcTab Ubiquitous Computing Experiment 27

decodes and executes the functions and then transmits a reply back to the
IR~gateway indicating its success. The gateway duly forwards the reply to the
correct agent as described above.

6 DEVELOPING SYSTEM AND
APPLICATION COMPONENTS

Members of the experimental community have built PARCTAB applications us-
ing three different approaches: Modula-3 libraries, Tcl/Tk and the MacTabbit
system. Each offered different levels of access to the PARCTAB and its capabil-
ities.

6.1 Modula-3

Modula-3 was a natural choice to build the first PARCTAB applications be-
cause it is also the language for the PARCTAB’s system software [21]. It had
many characteristics that recommend it for both tasks, along with a number
of shortcomings.

Modula-3 and System Development

Modula-3 is a relatively new language; it has a number of features that we
believe are valuable in building large systems. These include garbage collection,
light-weight threads, type safety, and support for modules and object-oriented
programming. PARC’s earlier successes using Cedar (an ancestor of Modula-
3) for systems work influenced our decision. In addition, we hoped that the
combination of type safety and object-orientation would result in higher quality,
more reusable code.

Modula-3’s threads were important for our design because they simplified the
architecture of the IR-gateway and agent. Both are long running servers that
interact with many clients at the same time. Each client has its own dedi-
cated thread: if one client doesn’t return promptly from a remote procedure
call, others are not adversely affected. Building a non-blocking server without
threads would require either changing the remote procedure call (RPC) mecha-
nism to make it asynchronous or abandoning RPC in favor of some lower-level
communication mechanism.

28 CHAPTER 1

Modula-8 and Application Writers

Modula-3 also facilitated the development of reusable libraries for tab appli-
cation writers. For example, we developed an object-based widget library to
handle the user interface. The object-oriented approach meant that each addi-
tion could build on previous work.

To simplify development work, we also built a PARCTAB simulator in Modula-
3. This program uses an X-window to mirror the PARCTAB display and mouse
events to simulate the PARCTAB pen and buttons. In many cases developers
prefer the simulator to the mobile hardware for program testing.

Although Modula-3 as a language met our needs well, the implementation we
used had a number of deficiencies. Modula-3 is still a young language, and so
the programming environment lacked certain tools, especially for debugging. In
particular, there was no support for debugging multiple threads: tracking down
the deadlocks and race conditions that come with multi-threaded programs was
particularly challenging. Modula-3 also produced very large runtime images
which occasionally taxed even our 64MB workstations.

To compensate for this shortcoming we built support mechanisms into the tab
system software. Each process can write selected information to a log file, and
system components have network-accessible interfaces for debugging and con-
trol. Programmers can use these interfaces to examine and set parameters, and
to restart components. The IR-gateway, for example, has extensive commands
for checking the status of the transceiver hardware.

6.2 Code Libraries

We implemented a class-based hierarchy of composable widgets, loosely mod-
eled on the Trestle window toolkit [21], to provide routine components such as
iconic and text buttons, scrollbars, bitmaps, text labels, scrollable text areas,
and dialog boxes. The PARCTAB’s very small screen generally precludes over-
lapping of widgets, so our widgets do not need to do the clipping required by
a conventional window system. This greatly simplified the implementation.

We also built the TabGroup programming interface to support concurrent use
of multiple tabs by a single application. A group of tabs could act as a shared
whiteboard or notepad, for example, displaying what was drawn on one tab to
all the others in the group. With TabGroup, a program can wait for all pending

The ParcTab Ubiquitous Computing Experiment 29

output to be delivered to all its tabs, synchronize on input or other events, and
detect tabs that have stopped responding. Using a single process to control
a group of tabs with standard interfaces provided by the tab programming
library is often easier than running a separate process for each tab and having
the processes communicate by application-specific RPC.

6.3 The Tshell and Tcl

Originally the only software available to support developers was the widget
library. Developers used it much as they might use a language specific win-
dowing toolkit like Xt[15] to write X-windows applications. As a result, they
had to focus on low-level properties of the window system rather than on what
they wanted to accomplish. Furthermore, for designers implementing simple
user interfaces the turn around time of writing an application in a language
like Modula-3 or C was too long. It became apparent that we had to provide
fast prototyping capabilities and support the implementation of simple user
interfaces at a higher level.

We created the Tshell [24], a PARCTAB-shell extended with a Tcl interpreter
and a subset of Tk [23], thus providing both a scripting language that supports
remote communication and a windowing toolkit. The choice of Tcl/Tk over
other extension languages was based mostly on three reasons:

1. Tcl/Tk is widely used.

2. Tk provides a complete set of building blocks for creating graphical user
interfaces. We could quickly select and implement a subset of widgets
useful for the PARCTAB’s small display size.

3. Tcl/Tk can be embedded into applications so that Tcl interpreters in dif-
ferent applications can exchange commands.

The design of Tab-Tk, the port of Tk to the Tab, focused on maintaining
the natural look and feel of the Tk widgets while exploiting the small area of
the Tab display as much as possible. We made several key observations and
decisions during the port:

m The PARCTAB screen is too small to display multiple windows at the same
time. Screen management therefore employs the same “one window at a
time” philosophy as other tab applications.

30 CHAPTER 1

m Because the Tab’s screen area is limited, it makes extensive use of menus.
They must be intuitive to use and have good response times.

m PARCTAB size and limited processing capabilities call for simplicity. The
current implementation of the Tk toolkit for the Tab therefore provides a
core widget set of buttons, labels, menus, text, entries, frames and toplevel-
windows. We left out such features as the packer and canvas, a full-fledged
drawing widget.

Tcl/Tk provides a high level language to rapidly prototype the graphical user
interfaces for PARCTAB applications and a communication platform that allows
programs to exchange commands with Tcl interpreters in other applications.
In a matter of three months, members of our community created a wide range
of new applications, including a context-based reminder system, a remote con-
troller for a presentation manager, a pan/tilt camera controller, a remote editor
for leaving notes on a workstation.

6.4 The MacTabbit system

Our colleagues at the Rank Xerox Research Centre (RXRC - formally called
“EuroPARC”) used a different approach to develop applications for the PARCTAB
. The Apple Macintosh is the computer of choice at RXRC, and tab users there
wanted to access Macintosh applications. MacTabbit does this by arranging for
the PARCTAB to control a small portion of the Mac screen. It echoes updates
in this region to the tab and sends pen and button events on the tab to the
Macintosh.

Using graphical application builders on the Mac such a Hypercard, users can
quickly prototype specialized Tab interfaces on the Mac Screen. When the
interface works correctly, it takes but a few seconds to move it on to a tab.
Furthermore, once the connection has been made to Hypercard, a user may
select from a variety of Hypercard-based applications.

MacTabbit has provided an excellent prototyping environment for people unfa-
miliar with the conventional tab programming environment, and it has drawn
in developers who would not normally have become involved. System perfor-
mance was also good given the small tab screen. An extension of the MacTabbit
mechanism caches commonly used image fragments in the tab, thus reduc-
ing bandwidth requirements and further improving performance. RXRC has
used the MacTabbit mechanism to prototype many tab applications such as

The ParcTab Ubiquitous Computing Experiment 31

Forget-me-not (see Section 7.1), an automatic diary and reminder system, and
a media-space controller (see Section 7.2).

7 A CLASSIFICATION OF PARCTAB
APPLICATIONS

| Mobile Application Categories

Information Access
Communication

Computer Supported Collaboration
Remote Control

Local data/applications

Table 1 Mobile Application Categories

Three characteristics differentiate a tab and the kinds of applications that it
supports from traditional personal computers:

1. Portability: very small form factor, low-weight
2. Communication: low-latency interaction between users and system

3. Context-sensitive operation

Our system represents context by a combination of factors: location, the pres-
ence of other mobile devices, and the presence of people. Context also includes
time, nearby non-mobile machines and the state of the network file system.
Traditional computer systems have had access to much of this information, but
they have typically not made much use of it. Context can be used to adapt the
user interface, criteria for extracting and presenting data, system configuration,
and even the effects of commands. Although context may be used to present
the options most likely to be chosen, a well-designed system would also allow
a user access to the full range of choices on request.

Some of the applications we describe are available on small commercial PDAs
whose size is comparable to that of a tab, but no PDA has the network infras-
tructure to support the full range of applications supported by the PARCTAB.

32 CHAPTER 1

The combination of a wireless network and the use of context make this system
unique. A summary of the application categories we have experimented with
is given in Table 1 and described in some detail in the following sections.

7.1 Information Access

Access to information stored in our computer networks has become central
to the way we conduct our work. The PARCTAB IR network has provided a
mechanism to make information access independent of location. (Note that
although all stored information is accessible from any networked workstation,
people tend not to use someone else’s machine.)

Each PARCTAB is linked to our local area network and so can retrieve any
information available through it or through remote networks connected to it.
For example, the commonly used weather program displays the current weather
forecast (obtained from the Internet) and the local temperature and wind-speed
(obtained from a weather station on the local network). PARCTAB users also
have at their fingertips a dictionary, a thesaurus, a Unix file browser and a
connection to the World Wide Web. The WWW protocol is a popular way
to access information stored all over the Internet. Some care must be taken,
however, to adapt the information retrieved to the small PARCTAB screen.

PARCTAB applications have also been integrated with existing desk-top ap-
plications. The PARCTAB calendar manager, for example, works with Sun’s
calendar manager (“cm”), already in use. An update to a user’s calendar ei-
ther on a workstation or on a PARCTAB will enable the data to be viewed on
both systems.

The tab location-based file browser shows how context can be used to filter
information. Instead of presenting the complete file system hierarchy, it shows
only files whose information is relevant to the particular room it is in. Such a
mechanism can be used to provide a guided tour for a visitor or to provide infor-
mation that is relevant to a location, such as the booking procedure associated
with a conference room.

More complex uses of context can be seen in tools built at RXRC such as
Forget-me-not [19, 22, 20, 18, 17]. This application provides a tab user with an
automatic biography of their life by remembering for each day details such as:
where the person went in the office, whom they met, the documents they edited
or printed, and any phone calls that were made or received. The motivation

The ParcTab Ubiquitous Computing Experiment 33

behind this work is to provide an aid to our fallible human memories, a so called
memory-prosthesis. The application operates by providing an iconic interface
that allows a user to search and filter the biography for a particular event. For
example, suppose a forgetful user were trying to find the name of a document
that she was editing when Mike came into the room a short while after the
seminar last week. The filter would be set up to show documents in use when
Mike was around, on the day of the seminar. As we seem to waste a great deal
of our lives searching for things we have either misplaced or information we have
forgotten, Forget-me-not has the potential to help us work more effectively.

7.2 Communication

Electronic mail has long been a popular communication tool for computer users.
Mobile access further enhances e-mail by increasing its availability.

Group meetings often account for a large amount of our work time, and so
electronic mail has been an important application for the PARCTAB. Access to
e-mail during meetings seems to have satisfied a genuine need.

The PARCTAB e-mail application could be extended to use context to generate
filters for displaying messages or notifying users of incoming mail. For example,
all messages might be delivered while a user is alone, but only urgent ones would
be delivered during a conference. In related work [12] a query language has been
used to filter incoming mail.

Locator and Pager Operation

The PARCTAB system inherently provides a locator system, assuming that the
person who needs to be found is carrying a PARCTAB. In an office, people
can use context to decide whether to disturb a colleague, once they have been
located [37]. For example, a person is more likely to welcome interruptions
alone in their office than while in a meeting. With the PARCTAB system, a
person may be paged unconditionally, or the importance of the page can be
assessed in association with the recipient’s context, so that the message will be
either delivered or delayed until the context is more favorable.

34 CHAPTER 1

Media Applications

Another RXRC application is the “Communicator”, a context-sensitive media-
space controller. A description of the original media-space concept is given
by Buxton [4] — a video-conferencing mechanism based on an analog-switch
controlled by workstations, allowing users to establish video connections to
various places in an appropriately wired building. The tab has been used to
enhance this facility through an application that will suggest the easiest way
to communicate with the person you wish to contact, and then help establish
the connection. Knowledge of where the recipient is situated is known to the
system because they are carrying a tab, the calling party only needs to know
their name. If a media-space terminal is not available, the application might
suggest the best alternative: a phone number, let you know they are actually
next door, or offer to send an e-mail note from the tab screen. More recent
work at the University of Toronto has taken this work further and combined
Ubiquitous Computing with video in a reactive environment [3].

An application that pushes the PARCTAB’s communication abilities to their
limits is media windowing. An otherwise unused IR channel can transmit one
low-resolution frame of slow-scan video in about 1.5 seconds. These images
are very grainy because of the coarse resolution of the PARCTAB screen and
the limited bandwidth of the link. Nevertheless people are remarkably good at
recognizing faces and scenes, and the images are still useful. Future systems
with improved screens and higher bandwidth links could provide applications
for remote monitoring and mobile communication using sound and video.

7.3 Computer Supported Collaboration

People often gather with a common goal or interest, perhaps at a lecture, or
else to arrive at a common decision. Because the PARCTAB is small, it can
easily be used in these collaborative situations.

Group Pointing and Annotation

A PARCTAB used as a pointing device operates much like a mouse. However,
a PARCTAB can connect to different computers depending on its location.

Many PARCTABs can also connect to the same computer. Consider, for ex-
ample, the case in which a lecture is presented using a large electronic display
such as a Liveboard (see 2.3). Each tab in the audience can control a dif-

The ParcTab Ubiquitous Computing Experiment 35

ferent pointer on the display. We have built a remote display pointer using
the PARCTAB screen as both a relative and absolute positioning tool: the user
controls the location and motion of the pointer by moving a finger over the
PARCTAB’s touch surface!.

Voting

The PARCTAB can also be used when members of a group wish to arrive at a
consensus, perhaps anonymously. Even if anonymity is not important, simulta-
neous voting can collect data that is unbiased by the voting process. If people
vote in sequence, earlier viewpoints inevitably bias later ones.

We have built a voting application called Arbitron for the PARCTAB system.
It has proved particularly interesting in the context of presentations. Audience
members with PARCTABs vote on the quality and pace of the material being
covered by a presenter. The votes are collected anonymously and displayed on
the Liveboard. The board is visible to both the audience and the presenter;
thus everyone knows whether their colleagues are as bored or entranced as they
are. Without the PARCTAB listeners would have to interrupt the presentation
to ask the speaker to speed up, slow down, or move to another point.

Multi-tab Virtual Paper

Tabdraw is a multi-tab application that allows the tab screen to be used as if
it were a piece of scrap paper. Each PARCTAB participating in the application
owns a piece of virtual paper and can draw on it. The participants also have
the option of seeing the drawings of their colleagues by superimposing them on
their own work. This scheme ensures that users “own” the line segments they
draw; no one else can erase them. As a result, many users can work together
in a coordinated fashion without impairing fair participation.

The shared drawing is generally defined by the room that people are in. A
group in one room will automatically obtain a separate drawing surface from
that in another room. Alternatively, a group might arrange to share a drawing
regardless of location.

LA tab-based remote pointing and annotation tool was demonstrated as part of the Xerox
exhibit at Expo ’92 in Seville

36 CHAPTER 1

7.4 Remote Control

Television and stereo system remote-controls have popularized the notion of
control at a distance. In fact so many pieces of consumer electronics have such
controllers that one can now buy universal remote controls that control many
devices at the same time. A PARCTAB can also act as a universal controller.
Furthermore, it can command applications that traditionally take their input
from a keyboard or a mouse.

Since a tab can display arbitrary data, the controls available to a user can be
changed depending on context. (Commercial universal remote controllers, in
contrast, tend to need a large array of buttons.) Enabling the remote control
application in an office may trigger a tab to provide a control panel that adjusts
lighting and temperature, whereas in a conference room the interface might be
biased toward presentation tools.

Program Controllers

During our experiments with group drawing and pointing tools it became clear
that a PARCTAB has some interesting control possibilities as a drawing interface
for a drawing program. It can make additional commands available without
cluttering the main screen, and it can also provide a more powerful set of
commands than was available in the original program by providing a single
button that controls a sequence of low-level drawing primitives. If a program
is already intended for remote use and has a network interface, controlling it
with a PARCTAB is very easy.

X10 Remote Control

Another Ubiquitous Computing project at Xerox PARC, the Responsive En-
vironment Project [9], has been exploring how environmental control can save
energy during the day-to-day operation of a building. The project had created
servers that control power outlets through a commercial system called X10 [2].

Because the servers controlling appliances in part of the building being studied
by the Responsive Environment project were already connected to the local
area network, it was a simple matter to build PARCTAB applications to control
them.

The ParcTab Ubiquitous Computing Experiment 37

7.5 Local Operation

The PARCTAB is near one extreme of a spectrum of possible devices ranging
from the remote terminal (devoid of function without its connection to the
network) to the standalone computer (capable of many operations without any
communication links). The latest revision of the tab hardware has 128K of on-
board memory, so that data and programs can be downloaded through the IR
link and executed in a stand-alone mode. Operating the tab in this way frees a
user from the IR network, but of course severely limits the tab’s functionality.

The storage capacity of a mobile device will probably always be small compared
to the expectations of its user. Consequently applications must take care to
download only the most relevant information. For example, if a user has unread
electronic mail at the end of a work day, the system might transfer the messages
to the PARCTAB so that they could be read in transit or at home. (Currently,
all downloading of information and programs occurs under the user’s control.)

8 EXPERIENCES WITH THE PARCTAB
SYSTEM

The PARCTAB system has been in use since March 1993 and now serves a small
community of users. We have made a number of useful observations during this
period and have begun to understand its successes and failures.

8.1 The Experimental Network at PARC

PARC was a convenient test site for the PARCTAB system because installation
was very easy. Before the project began every office already contained a work-
station connected by an ethernet. The hallways and common areas also had
access to nearby workstations. It was easy to install a communication cell in
an office by using velcro to attach a transceiver to the ceiling and then to run
phone cable down a wall into a junction box. The junction box usually rests
on the floor under a desk and has a power cable, and connects to the RS232
port of the workstation. Typically, the installation takes about 15 minutes.

Some users also installed cells in their homes. They already had ISDN lines,
which connect a home ethernet to the office network, and so a transceiver

38 CHAPTER 1

connected to a workstation at home was effectively tied to the PARCTAB in-
frastructure.

The first PARCTAB system released in March ’93 consisted of 20 users and 25
cells. The experience gained in this time enabled a second release in April 94.
The latter system was somewhat larger with a community of about 41 users
and 50 cells. It included many improvements that enhanced the performance
of the communication channel and the tabs’ perceived reliability.

For example, the original system relied on a central name-and-maintain service
(see Section 5.2) to route packets to tabs; when the service was unavailable the
PARCTAB system could not function. The new release has a distributed name
service that uses a network multicast mechanism to determine the address of
system components.

We discovered in the first release there were problems caused by high utilization
of the infrared network. High loads cause three problems: infrared packets
are more likely to be corrupted; transmit buffers in the transceiver overflow,
causing packets to be dropped; and the corrupted and dropped packets caused
more retransmissions, increasing the load. The high load exposed bugs in the
system design and implementation such as race conditions and badly-tuned
retransmission policies.

To improve user’s confidence in the system, we had to increase its reliability
and availability. This involved not only fixing bugs but also mundane improve-
ments such as a low-battery indicator for tabs. System components also needed
mechanisms for self monitoring. All the PARCTAB system processes now have
control panels designed to provide information in the event of a failure. We
have also put new mechanisms in place to monitor and maintain the IR-gateway
and the agent processes.

8.2 Infrared Interference

The PARCTAB could not be used effectively in several rooms in our building
because of IR noise due to fluorescent lamps controlled by electronic ballasts.
This is a waste of a unique form of communication bandwidth. Unfortunately,
electronic ballasts are slowly replacing the older magnetic ballasts because they
are more energy efficient. We found a considerable variation in interference
levels from lamps made by different manufacturers. Some produce acceptable

The ParcTab Ubiquitous Computing Experiment 39

levels of IR, and it would be useful if lamp manufacturers were required to
adhere to a maximum limit for IR emissions.

Positioning of a room transceiver is also important. Installers should avoid
direct sunlight, that can change position throughout a day (and during the
year), and proximity to fluorescent lamps and to obstructions on the ceiling.
Transceivers in adjacent cells should be positioned carefully so that their signals
do not pass through doorway or interior windows and cause interference.

8.3 Usage Data Measured from the PARCTAB
System

Part of the benefit of building a real system has been the opportunity to study
how a versatile personal information-terminal might be used in advance of a
commercial system. We studied the 1994 release of the tab system for three
months to determine its use characteristics. The participants all consented to
automatic logging of system events.

We began recording two weeks after system deployment so that users could
familiarize themselves with the PARCTAB. To limit the data to a manageable
quantity, we logged only the following events: Interactive, Switch, Idle, and
Missing?. Interactive occurs when a user powers up a tab, Switch occurs when
a user switches to a new application, Idle is generated when a tab has not been
used for 4 minutes, and Missing is a timeout event generated by the system
when the infrared network cannot detect a particular tab. Each event was
recorded along with a timestamp and cell location. In addition, there were two
questionnaires given out to our users, one at the outset of the tab use study
and one at the close. This provided contextual information, and information
to interpret the logging data.

Which Applications were Popular?

The switch events can be used to determine the relative popularity of the
various PARCTAB applications. Figure 11 shows the percentage of invocations
accounted for by each application. Four were distinctly more popular than the

2During the 3 month study some system processes died and were restarted causing some
events not to be logged. This results in minor, but conservative, inaccuracies in the reported
statistics.

40 CHAPTER 1

rest: e-mail, weather, file browser, and the loader. Possible implications of
these results are discussed in Section 9.

12

11

10+ o Normalized Invocations (%)
94 | Invocations (%)

8 —
7 -
6 —

54

Per cent of I nvocations

4
34

2—

o -4

Figure 11 Histogram showing the number of invocations for each application
(not including the shell or tshell) expressed as a percentage of the total invo-
cations of these applications during the test period. Normalized results only
count one invocation per day per user to remove distortions that might arise
when users experiment with an application several times during a brief period.
Applications that might normally be invoked several times a day suffer under
this measure.

How Long were Applications in Use?

Another way of looking at application popularity is to consider how long each
application was in use (see Figure 12). It should be noted that the total ap-
plication interaction time is 4871 minutes over 3 months (13 weeks) for 41
users. This amounts to only 119 minutes/user or about 1.8 minutes/user/day
(65 days, excluding weekends). From our logs the total number of application
switches for all tabs throughout the study was 2996 and therefore the average
interaction time was about 97 seconds.

The ParcTab Ubiquitous Computing Experiment 41

The application popularity ranking is somewhat different from Figure 11. The
e-mailer, unistroke test and learn program, unistroke notetaker, file browser,
and the loader are the most long-lived applications. The weather program falls
to 8th place (perhaps because it only imparts a small amount of information at
any one time). Meanwhile the note-taker moves up to 3rd place — not surprising,
as taking notes is by its nature a time-consuming activity. It is interesting to
observe that reading e-mail, browsing system files, and loading data turn out
to be the most used in both measurements.

This use pattern differed from the participants own expectations of use. Al-
though they expected to read e-mail, (four of the participants did not use e-mail
on the tab at all, due to incompatible mail systems), over half commented that
they expected to use the tab primarily as a calendar. It is also worth noting
that according to user reports the e-mail program was used to read e-mail much
more than to send e-mail using Unistrokes. The Unistroke test and learn pro-
grams appear in the ranking even though they are typically not activated very
often; users may spend a block of time running them when first acquiring the
skill.

Graph 13 shows the percentage of application interactions that last less than
a given time. We have removed interactions of less than 10 seconds because
users often turn a tab on and then off immediately to confirm that it is working
normally. From this graph we can see that 50% of interactions last less than
100 seconds (1.7 mins), 75% less than 230 seconds (3.8 mins) and 90% less
than 500 seconds (8.3 mins). This supports our notion of the tab as a device
for “casual” interactions.

Figure 14 shows what fraction of users had their tabs turned on for various
total periods of time. The study group can be roughly divided into three user
types. 7% (3 people) used the tab for 360-480 minutes during the test (6.4 min-
utes/day). 15% (6 people) used it for 144-360 minutes (3.9 minutes/day) and
78% (32 people) used it for less than 144 minutes in total (1.1 minutes/day).
The average use time for the majority was very small, implying their interac-
tions were generally very brief.

Who Used the PARCTAB, How Long and Where?

Figure 15 shows interaction time for each user, subdivided according to location:
in their own office (black); in a common area such as a conference room, tea area
or seminar room (grey); or in a hall or another person’s office (white). Only 3
people used a tab primarily (for more than 50% of their total interaction time)

42 CHAPTER 1

400

300

200

Amount of use (minutes)

100

P E IS Fo S, TN IS
@9@§®$§§,§fo§&§°‘ °°$yfpb§é é‘\@ @po&@&é ,{p@é\@

Figure 12 Histogram showing the total interaction time by users for each
application in the tab system during the 3 month test period (not-including
the shell, 1273 minutes, and the tshell, 1081 minutes).

in somebody else’s office. Approximately 61% (25 people) of our community
used the tab primarily in their own rooms, and 27% (11 people) used it primarily
in a common area. Interestingly enough, for each pattern of use the preference
was quite clear.

By pooling the results of Figure 15 we can determine that people used tabs in
their own offices 57% of the time, in a common area 32% of the time , and in
another office 11% of the time (see Figure 16). 7% of own-office interactions
are in the presence of other tabs. 90% of common area interactions and 85%
of other-office interactions are also in this category.

The multiple-user applications, group drawing and remote pointing, were not
available for the duration of the use study. Group applications like this would
have generated a much higher network-load in the common areas, but are likely
uses of a ubiquitous mobile device.

The ParcTab Ubiquitous Computing Experiment 43

Per centage of Interactions

T T T 1
0 100 200 300 400 500

Application Interaction Length (seconds)

Figure 13 Graph showing the percentage of application interactions that
were under a given time during the test period.

Figure 15 shows that there is not a typical use pattern among the study group.
Our questionnaires showed that there were as many different expectations of
the tab system as there were participants in the study. For example, researchers
developing applications on the tab that expected to use the tab a great deal
did not necessarily have the largest interactions times, even though they had
to use the tab for their daily work. In contrast, some researchers who did not
expect to use the tab found that visitor demonstrations of the device added
significantly to their total usage time.

These results are important for overall system design because multiple tabs
interacting in the same area have a strong impact on the available bandwidth.
The PARCTAB system needs to be able to handle a usage pattern in which at
least 42% of all interactions occur with multiple tabs present.

44 CHAPTER 1

Number of Users

RN A S T G P i S S A
Minutes of Use

Figure 14 Histogram showing the number of users against their total inter-
action time divided into 20 equal divisions.

8.4 Discussion

Although the previous graphs give an indication of the way the tab was used
it is important to acknowledge the limitations of this study in representing the
use of the tab as a consumer item. First, the the user group was too small for
statistically significant results. Second, the system was still under development
and the applications were not fully supported. Furthermore, participants in
the study were not customers but rather laboratory staff using the tab as a
prototype. It was up to them to invent ways to use the tab, develop new appli-
cations and create ways to incorporate the tab into established work patterns.
As a result, we must qualify the numbers with anecdotal evidence and further
discussion of the ways people used the tab. Some of these remarks are listed
below:

Rich Gold: does not see any value in using a tab in his own office because a
powerful workstation is at hand.

The ParcTab Ubiquitous Computing Experiment 45

400 H
2 I
5
c
g 300 I =
5? i O In hall or office of another person.
= = In common area.
ks = Inown office.
£ 200 =
c —
é H
<

100 I I Omr=g

-
LIME
I I
|

m(l
1
Users

Figure 15 Histogram showing the total interaction time for each user in
seconds split between three location types: a user’s own office, a common area,
a hall or another person’s office.

John Ellis: prefers to use the tab in his own office to read his e-mail so that he
does not have to rearrange the windows on his workstation screen.

Dan Swinehart: found the tab system had a long response time, but found that
the tab system was faster than Mosaic for finding the definition of a word, .

Helen Dayvis: has used the email application and Unistrokes to take notes during
seminars and then mailed them to herself.

A number of people found the PARCTAB too heavy or awkward to wear.

Two women tab users (Karin Petersen and Nancy Freige) remarked that the
design of the belt clip was oriented towards a particular clothing style. For
example, not all outfits include belts, and furthermore not all belts work well
with clip on devices. Doug Terry also found the tab clip inadequate for his
use. Instead he used a small zippered nylon and (infrared transparent) fishnet
pouch to hold a tab so that it could be attached to his belt and continue to
report his location.

46 CHAPTER 1

2500
@ 2000+
5
=
£ e t2b in use alone (In Own Office)
B 1500 —————1 tab in use alone (In Common Area)
3 / C——— tab in use done (Other)
S @ tabin use with other tabs
3 1000
£
<
500 — y
0 7/
In Own Office In Common Area Other
(57%) (329%) (11%)

Figure 16 Histogram showing the total interaction time by all users for each
of the three general areas: a user’s own office, a common area, a hall or another
person’s office.

A researcher who preferred to remain anonymous commented on the difficulties
of building new applications in Modula-3: ‘I don’t want to say anything against
Modula-3 but if I have to learn a new language at the same time as trying to
program a new [computer| I may not get much done.’

The ease of reading text on the small screen surprised most of the participants
in the use study. At the beginning of the study we found almost 1/2 of the
participants had commented that because of the low resolution of the screen
they did not intend to read longer files.

As the list above indicates, it is difficult to suggest a ‘typical’ use of the
PARCTAB The PARCTAB system was an experiment that many people vol-
unteered to participate in. It was shaped by their own ideas, needs and con-
tributions. A direct consequence of building a system that can be used by a
community is that it is possible to gain understanding of the real problems (see
Section 9), issues to be addressed, and activities that need to be supported.

The ParcTab Ubiquitous Computing Experiment 47

8.5 Research at other Sites

To gain more general experience we gave the tab system (including tabs, transceivers,
and software) to a number of other research departments. The largest of
these sites was the Rank Xerox Research Centre (Cambridge, England) with

12 transceivers and 10 PARCTABs. Flinders University (Adelaide, Australia)
University of Washington, University of Toronto and Olivetti Research Ltd
(Cambridge, England) also received small numbers of PARCTAB system com-
ponents for their own research. RXRC produced a number of applications
(see Section 7), and the University of Toronto now uses tabs to control the
equipment in its “telepresence” room.

9 CONCLUSION

The PARCTAB system enables a unique set of applications that have used com-
munication and context to enhance their operation. By designing a system and
deploying it, we were able to gain some insight into the benefits and problems
faced by mobile systems. The following sections draw some conclusions.

9.1 Design Perspective

The PARCTAB architecture depends on small-cell wireless communication. It
thus combines portability with information about context. A downside of this
approach was that the PARCTAB was not very useful out of contact with the
network. Some of our users were dissatisfied that the tab had only very limited
use when disconnected from the network. Perhaps the real value of a PDA
comes from both connected and disconnected operation. One without the other
leaves them dissatisfied.

Our system design was based on a distributed architecture containing many
components. Although each component was relatively simple the complete sys-
tem presented a level of complexity that made it difficult to debug. We learned
to remove as many points of failure as possible to allow users to understand
what was going on.

48 CHAPTER 1

9.2 Bandwidth Limitations

One of our early design assumptions was that a 19.2k baud link was adequate
for building the PARCTAB system. If users do not often share cells or do not,
on average, operate their PARCTABs at the same time, the system can usually
respond within 1 or 2 seconds. In meetings, however, these assumptions seldom
hold true. Users tend to operate tabs at the beginning of meetings, at short
breaks and perhaps when they are bored, resulting in synchronized use and
poor performance.

We now recognize that such systems have to be engineered to deal with the
maximum congestion that can result from the maximum number of mobile
units in a room. Figures based on average usage patterns do not justify cutting
corners.

9.3 Characteristics of User Generated Traffic

Another early design assumption was that applications would have repeating
usage patterns of the form 1) event 2) screen update 3) delay, with the delay
caused by the time it takes a user to read the screen. However the Unistroke
interface changed this pattern. A Unistroke writer can make several strokes per
second. In combination with other Unistroke traffic, this can generate a load
greater than the IR network was designed to handle. As a result, we have begun
work on improving the partitioning of applications between the PARCTAB and
the rest of the system. The Unistroke recognizer has recently been ported to
the PARCTAB firmware, allowing us to send packets of characters rather than
a sequence of stylus positions. This approach uses significantly less bandwidth
in both directions and will be included in a future PARCTAB release. Display
keyboards could work the same way.

The largest impediment for people using Unistrokes was the slow response-time
of the system when displaying a character after each stroke of the stylus. Many
of the participants who had learnt Unistrokes, claimed to be able to write faster
than the system could keep up. All of those who learnt Unistrokes felt that it
was a superior form of text input.

The ParcTab Ubiquitous Computing Experiment 49

9.4 Factors Affecting Acceptance

Whether or not a tab is adopted in the workplace turns out to depend on many
factors: among them size, appearance, convenience, peer pressure, application
types, and critical mass of applications. People, in general, have well established
work habits that are a barrier to learning a new system. Applications that
solve a real problem are however compelling, and a diversity of application
type makes the tab a solution to many problems.

It has become clear that changing the nature of a single characteristic can tip
the balance between acceptance and rejection of the device e.g., the design of
a suitable belt/clothes clip. Small changes in design can have large effects and
this makes it difficult to make predictions. Building a system intended for use
is the only way to really find out.

We have discovered how difficult it can be to persuade people to make changes
to their daily routine in order use a device like the PARCTAB. Furthermore,
an individual’s style of dress has a significant impact on whether a tab can be
easily attached and worn like a pager. One user’s tab fell off a belt in a parking
lot, damaging the device, and making the user less willing to carry it.

Many people expressed an interest in a system that could be used both inside
and outside the building, and if this had been the case, they might have adopted
it in more readily. It is clear that a conventional radio broadcast scheme would
allow greater mobility, but at the expense of bandwidth and the lack of con-
text. A more comprehensive system might use a combination of nano-cellular
communications for in-building use and a packet-radio scheme for outside use.

There were two important aspects of tab use in the CSL study that were demon-
strated by the logging data. First, the brief period that applications were used
(50% were under 100 seconds), and second, the generally infrequent usage-
pattern.

Given that the typical behavior is of short user-interaction-times, we might be
able to better support a user’s needs by supplying more casual interfaces that
summarize data on the tab top-level screen (e.g., time, weather, amount of
mail to read etc), enabling a user to retrieve information at a glance. Perhaps
icons that change state to represent the activity of their underlying applications
would address this issue, replacing the desktop metaphor currently in use by a
wrist-watch metaphor.

50 CHAPTER 1

The total interaction-time combined for all tabs was not very large. This is
as much a reflection on the context of use as any inherent difficulties with the
tab. The researchers and support staff participating in this experiment work
in a computer-saturated environment. They are never far from a workstation,
and apart from attending meetings, their work practices typically do not rely
on being mobile (see Figure 16, percentage of time spent in an office). This
suggests that further work for integrating the tab into the office environment
needs to be considered, for example, using the tab as another computer monitor.
But it also suggests that in a manufacturing environment, or a hospital, tabs
might support established mobile work-practices.

It should also be noted that the tab system is a prototype and is not supported
to the same extent as an established product (e.g., no user manuals). In this
case study, the users are participating in the development and therefore it is
more appropriate to think of them as participants rather than users.

In the near future, a device capable of performing the PARCTAB’s functions
could be made about one third the thickness and one third the weight of the
current version (3-4 mm thick and perhaps 70 grams). This may further en-
courage its use.

9.5 Application Development

We set out from the start to encourage the user community to become involved
in writing applications. The original Modula-3 programming environment, al-
though a state-of-the-art approach to building systems, was unfamiliar to many
of the users. In some cases learning it was too much trouble for producing a
relatively simple application. In addition, the compiler created large binaries
(often greater than 3MB for each application), imposing a significant load on
machine resources when many applications were active. Making it possible to
write applications in Tcl/Tk and Hypercard was significant in broadening the
interest of application developers.

9.6 Importance of User Interface

An innovative part of building the PARCTAB system has been the design of
user interfaces that are suited to a small screen e.g., elision and Unistrokes.
The latter is a powerful technique that can be used with pen-based computers
of any size.

The ParcTab Ubiquitous Computing Experiment ol

The design of the PARCTAB packaging was clearly successful. In particular,
our users liked a design that was adapted to either right or left handed people.
It was also clear that three physical buttons usually provided an unambiguous
mode of use. Although it was tempting to design the user interface with more
buttons, enforced simplicity has turned out to be a bonus.

9.7 Popular Applications

Our system provided many programs that could be used in the work environ-
ment. It is interesting to consider the four most commonly invoked. In first
place was the electronic mail reader, providing access to e-mail that is nor-
mally only available at a workstation. Perhaps this is not surprising given that
the study was carried out at a computer-science research laboratory. However,
electronic mail is becoming more popular in the business community and this
result might be significant in predicting a future market.

The weather program scored second highest. It is possible this shows an in-
herent fascination with weather, or the program may just be good demo-ware.
We hope that this indicates a deeper interest in information that is up-to-date
and easily accessed. In that case, a mobile interface to the World Wide Web
or other information services might prove compelling.

In third place was the file browser, providing access to text and command files
stored in the Unix Network Filing System. Since the entire study group works
almost entirely with electronic documents which are available on-line, this is
a likely result. Finally, in fourth place was the tab loader, which allows users
to store information in the tab’s local memory and use it outside the infrared
network. It is not surprising it has also been popular.

Although the unistroke notetaker was not invoked very often, it accounted for
a significant chunk of total tab usage. It is possible that note-taking could
become a heavily-used application, especially if local processing of unistrokes
yields the expected improvements in performance.

Of the remaining applications there is one result that appears to be out of place.
The PARCTAB calendar/diary appeared mid-way through both the popularity
and runtime results. In the initial questionnaire all but two of the users had
stated that they intended to use the calendar manager regularly. Although
there was some difficulty with the compatibility of electronic calendars in use,
80% of the participants could use the appropriate calendar manager on the

52 CHAPTER 1

tab. Given that office environments have schedules that involve many meetings
and numerous visitors, this result seems low. We have found, however, that
users often have traditional solutions to this problem in place (e.g., pocket-book
diaries). New solutions that are as good, or only marginally better (such as
tab access to an on-line calendar) are not easily adopted.

9.8 System Benefits

One important contribution of the PARCTAB system has been the experimen-
tal infrastructure that allows users to prototype new application ideas. The
system has been something of a catalyst in generating new ideas in the area of
Ubiquitous Computing and has inspired novel applications. Because the infras-
tructure is easily assembled and can be exported to other test sites, we have
also had the benefit of stimulating other research.

9.9 Future Work

Many system issues still need to be explored, for example, how to resolve con-
flicts during disconnected operation when related information has changed in
both the mobile and the fixed part of the system [7, 35, 34]. Another area that
needs exploring is how to partition system functionality across a wireless link
with the aim of reducing communication latency. An extension of the existing
work that would allow us to make better use of system context, is the design of
a mechanism for the precise location of objects in a building. Ubiquitous com-
puting could take advantage of precise location information: knowing which
screen a user is currently looking at, for example, is invaluable when deciding
how to present urgent information. Finally, the whole area of miniature user-
interface research deserves further study and has the potential for many more
innovations.

Ubiquitous computing has been the main inspiration for the PARCTAB project.
The use of this system has allowed us to study context-sensitive applications.
These prototype applications have demonstrated the potential for innovation
in this area. In the future we expect to continue to carry out research with
the PARCTAB, and also other hardware and software that will help define the
future of ubiquitous computing. Our experience with the PARCTAB systems
look very promising and brings us a step closer to realizing that future.

The ParcTab Ubiquitous Computing Experiment 23

Acknowledgements

We wish to thank the many summer interns that have contributed to this
project and made it fun to work on: Michael Tso, Nina Bhatti, Angie Hin-
richs, David Maltz, Maria Okasaki, and George Fitzmaurice. We also wish to
thank: Jennifer Collins and Sonos Models for facilitating the PARCTAB pack-
aging; Bill Buxton (University of Toronto) for his advice concerning UI design;
Terri Watson, Berry Kercheval and Ron Frederick for developing novel appli-
cations; Natalie Jeremijenko for collecting and processing results from the tab
usage experiment; Olivetti Research Ltd (ORL) and Andy Hopper for collab-
orating with us while developing the communication hardware; Brian Bershad
(University of Washington), Craig Mudge(Flinders) and Mike Flynn for their
keen advice and collaboration; and Wayt Gibbs and Paul Wallich for editing
this paper. Finally, we wish to thank and acknowledge Mik Lamming for his
original contributions and support during the lifetime of the project.

REFERENCES

[1] Norman Adams, Rich Gold, Bill N. Schilit, Michael Tso, and Roy Want. An
infrared network for mobile computers. In Proceedings USENIX Sympo-
sium on Mobile & Location-independent Computing, pages 41-52. USENIX
Association, August 1993.

[2] Jeff Bachiochi. X-10 interfacing with plix. Circuit Cellular INK, pages
74-79, Oct/Nov. 1992.

[3] William Buxton. Living in augmented reality: Ubiquitous media and re-
active environments. To appear in CACM, 1995.

[4] William Buxton and Tom Moran. EuroPARC'’s Integrated interactive in-
termedia facility (iiif): early experiences. North-Holland, 1990.

[5] George Calhoun. Digital Cellular Radio. Artech House Inc, 1988.

[6] Alan Demers, Scott Elrod, Christopher Kantarjiev, and Edward Richley. A
nano-cellular local area network using near-field rf coupling. In Proceedings
of Virginia Tech’s Fourth Symposium on Wireless Personal Communica-
tions, pages 10.1-10.16, June 1994.

[7] Alan Demers, Karin Petersen, Michael Spreitzer, Douglas Terry, Marvin M.
Theimer, and Brent Welch. The bayou architecture: Support for data shar-

54

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

CHAPTER 1

ing among mobile users. In Proceedings Workshop on Mobile Computing
Systems and Applications. IEEE, December 1994.

Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz,
William Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John
Tang, and Brent Welch. Liveboard: A large interactive display supporting
group meetings, presentations and remote collaboration. In Proc. of the
Conference on Computer Human Interaction (CHI), pages 599-607, May
1992.

Scott Elrod, Gene Hall, Rick Costanza, Michael Dixon, and Jim des Riv-
ieres. Responsive office environments. CACM, 36(7):84-85, July 1993. In
Special Issue, Computer-Augmented Environments.

Neil Fishman and Murray S. Mazer. Experience in deploying an active
badge system. In Proc. of IEEE Globecom Workshop on Networking of
Personal Commaunications Applications, December 1992.

Jim Fulton and Chris Kent Kantarjiev. An update on low bandwidth X
(LBX). Technical Report CSL-93-2, Xerox Palo Alto Research Center,
February 1993.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. CACM, 35(12):61—
70, Dec 1992.

David Goldberg and Cate Richardson. Touch typing with a stylus. In
Proc. Conference on Human Factors in Computing Systems (INTERCHI),
pages 80-87. ACM/SigCHI, Apr 1993.

Andy Harter and Andy Hopper. A distributed location system for the
active office. IEEE Network, pages 62-70, January/February 1994.

Oliver Jones. Introduction to the X Window System. Prentice Hall, 1989.

Christopher Kent Kantarjiev, Alan Demers, Robert T. Krivacic Ron Fred-
erick, and Mark Weiser. Experiences with X in a wireless environment. In
Proceedings USENIX Symposium on Mobile & Location-independent Com-
puting, pages 117-128. USENIX Association, August 1993.

Mik Lamming. Towards future personalised information environments.
In FRIEND21 Symposium on Next Generation Human Interfaces, Tokyo
Japan, 1994. Also available as RXRC TR 94-104, 61 Regent St., Cam-
bridge, UK.

The ParcTab Ubiquitous Computing Experiment 5%}

[18] Mik Lamming, P. Brown, Kathy Carter, Marge Eldridge, Mike Flynn,
Gifford Louie, Peter Robinson, and Abi Sellen. The design of a human
memory prosthesis. Computer Journal, 37(3):153-163, 1994.

[19] Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in
support of human memory. In FRIEND21 Symposium on Next Generation
Human Interfaces, Tokyo Japan, 1994. Also available as RXRC TR 94-103,
61 Regent St., Cambridge, UK.

[20] Robert Langreth. Total recall. Popular Science, pages 46-82, February
1995.

[21] Greg Nelson. System Programming with Modula-3. Series in Innovative
Technology. Prentice Hall, 1991.

[22] William Newman and Mik Lamming. Interactive System Design. Addison-
Wesley, 1995.

[23] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[24] Karin Petersen. Tcl/tk for a personal digital assistant. In Proceedings of
the USENIX Symposium on Very High Level Languages (VHLL), pages
41-56, Santa Fe, New Mexico, October 26-28 1994. USENIX Association.

[25] Ken Pier and James A. Landay. Issues for location-independent interfaces.
In Xeroxz Parc BlueéWhite P92-00159, December 1992.

[26] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want.
The PARCTAB mobile computing system. In Proceedings Fourth Workshop
on Workstation Operating Systems (WWOS-1V), pages 34-39. IEEE, Oc-
tober 1993.

[27] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In Proceedings Workshop on Mobile Computing Systems and
Applications. IEEE, December 1994.

[28] Bill N. Schilit and Marvin M. Theimer. Disseminating active map infor-
mation to mobile hosts. IEEE Network, pages 22-32, September/October
1994.

[29] Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. Customiz-
ing mobile application. In Proceedings USENIX Symposium on Mobile
& Location-Independent Computing, pages 129-138. USENIX Association,
August 1993.

56

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

CHAPTER 1

Mike Spreitzer and Marvin Theimer. Providing location information in a
ubiquitous computing environment. In Proceedings of the Fourteenth ACM
Symposium on Operating System Principles, pages 270-283, Asheville, NC,
December 1993. SIGOPS, ACM.

Mike Spreitzer and Marvin Theimer. Scalable, secure, mobile computing
with location information. CACM, 36(7):27, July 1993. In Special Issue,
Computer-Augmented Environments.

Mike Spreitzer and Marvin Theimer. Architectural considerations for scal-
able, secure, mobile computing with location information. In Proc. 14th
Intl. Conf. on Distributed Computing Systems, pages 29-38. IEEE, June
1994.

Andrew Tanenbaum. Computer Networks. Prentice Hall, 1981.

Douglas Terry, Alan Demers, Karin Petersen, Michael Spreitzer, , Mar-
vin M. Theimer, and Brent Welch. Session guarantees for weakly-consistent
replicated data. In Proc. 8rd International Conference on Parallel and Dis-
tributed Information Systems, pages 140-149, September 1994.

Marvin M. Theimer, Alan Demers, Karin Petersen, Michael Spreitzer,
Douglas Terry, and Brent Welch. Dealing with tentative data values in
disconnected work groups. In Proceedings Workshop on Mobile Comput-
ing Systems and Applications. IEEE, December 1994.

Mario Tokoro and K. Tamaru. Acknowledging ethernet. Compcon, pages
320-325, October 1977.

Roy Want and Andy Hopper. Active badges and personal interactive com-
puting objects. IEEE Transactions on Consumer Electronics, 38(1):10-20,
Feb 1992.

Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The
active badge location system. ACM Transactions on Information Systems,
10(1):91-102, Jan 1992.

Mark Weiser. The computer for the 21st century. Scientific American,
265(3):94-104, September 1991.

Mark Weiser. Hot topic: Ubiquitous computing. IEEE Computer, pages
71-72, October 1993.

Mark Weiser. Some computer science issues in ubiquitous computing.
CACM, 36(7):74-83, July 1993. In Special Issue, Computer-Augmented
Environments.

The ParcTab Ubiquitous Computing Experiment o7

[42] Mark Weiser. The world is not a desktop. Interactions, pages 7-8, January
1994.

[43] Mark Weiser, Alan Demers, Brent Welch, and Scott Shenkar. Scheduling
for reduced CPU energy. In Operating System Design and Implementation
(OSDI), Monterey, CA, 1994.

