

Enhancing Web Browsing Security on Public Terminals
Using Mobile Composition

Richard Sharp & Anil Madhavapeddy

Citrix Systems Inc.
Castle Park

Cambridge, CB3 0AR. UK
richard.sharp@eu.citrix.com,

anil.madhavapeddy@eu.citrix.com

Roy Want & Trevor Pering
Intel Research

2200 Mission College
Santa Clara, CA 95052
roy.want@intel.com,

trevor.pering@intel.com

ABSTRACT
This paper presents an architecture that affords mobile users
greater trust and security when browsing the internet (e.g., when
making personal/financial transactions) from public terminals at
Internet Cafes or other unfamiliar locations. This is achieved by
enabling web applications to split their client-side pages across a
pair of browsers: one untrusted browser running on a public PC
and one trusted browser running on the user's personal mobile
device, composed into a single logical interface through a local
connection, wired or wireless. Information entered via the
personal device's keypad cannot be read by the PC, thwarting
PC-based key-loggers. Similarly, information displayed on the
personal device's screen is also hidden from the PC, preserving
the confidentiality and integrity of security-critical data even in
the presence of screen grabbing attacks and compromised PC
browsers. We present a security policy model for split-trust web
applications that defends against a range of crimeware-based
attacks, including those based on active-injection (e.g. inserting
malicious packets into the network or spoofing user-input
events). Performance results of a prototype split-trust
implementation are presented, using a commercially available
cell phone as a trusted personal device.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data abstraction, Domain-
specific architectures, Information hiding, Patterns

General Terms
Security, Performance, Design, Experimentation, Human
Factors.

Keywords
Split-trust, trusted personal device, crimeware, phishing, user
interface design

1. INTRODUCTION
As people are increasingly relying on the web for security

critical tasks, crimeware, malicious software designed expressly

to facilitate illegal activity, is being used to steal identities and
commit fraud. The Anti-Phishing Working Group (APWG), a
global consortium of companies and financial institutions
focused on eliminating Internet fraud, report that the use of
crimeware has “surged markedly” with the number of new
crimeware applications discovered doubling from April to June
2005 [4] and this trend continues into 2008. The increase is so
marked that the APWG believe that ultimately “conventional
phishing via social engineering schemes will be eclipsed by
advanced, automated crimeware” [5].

To date, the most prevalent form of crimeware is the
keylogger: a program that secretly records users' key-presses,
transmitting sensitive information (e.g. credit card numbers,
usernames and passwords) back to criminals. Other examples of
crimeware include applications that record the contents of users'
screens, silently redirect web browsers to attackers' websites and
maliciously spoof user-input to control web applications (e.g.
trigger a money transfer in an on-line bank) [30, 18].

Technically savvy individuals have always been wary of
the threat of crimeware on public terminals (e.g. Internet cafes).
Worryingly, however, the recent wave of crimeware attacks has
involved malicious applications installing themselves on users'
personal PCs, either as Trojans [19] or by exploiting OS-level
vulnerabilities [18].

The threat of crimeware poses fundamental challenges to
the web's security model. In particular, although HTTPS/SSL
protects data as it is transmitted between client and server, it
cannot protect data from compromised end-points. For example,
as soon as the contents of an HTTPS URL have been decrypted
by the Secure Socket Layer (SSL) it can be snooped by Trojan
browser-extensions, screen-grabbers and other forms of
crimeware. Similarly, HTTPS/SSL does not preserve the
privacy or integrity of user input; malicious applications running
on the PC can, for example, record key presses and even fake
user input (e.g. generate a spoofed click event on a hyperlink).

Split-Trust Browsing addresses the threat of crimeware by
allowing people to browse the web using a combination of a
general-purpose networked PC and a personal, more trusted
device, linked together as a device composition. For the most
part, a user browses the web via the PC as normal. However,
security-critical operations are performed in conjunction with
their personal device, using its display and keypad for I/O.
Information entered via the personal device's keypad cannot be
read by the PC, thwarting PC-based key-loggers. Similarly,
information displayed on the personal device's screen is also
hidden from the PC, preserving the confidentiality of security-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiSys’08, June 17–20, 2008, Breckenridge, Colorado, USA.
Copyright 2008 ACM 978-1-60558-139-2/08/06...$5.00.

critical data even in the presence of screen-grabbing attacks and
compromised PC browsers. We believe that the composition of
general purpose PCs with trusted mobile devices gives users the
best of both worlds: they can enjoy the rich browsing
capabilities of their PC, with its large display and full-sized
keyboard and the greater degree of trust associated with
viewing/entering security-sensitive data via their personal
device.

The technical contribution of this paper is an architecture
for split-trust web browsing through mobile composition: a
technique that enables web applications to split their HTML
across a pair of browsers–one untrusted browser running on a
PC and one trusted browser running on a user's personal device.
A key feature of our architecture is that it requires only a local
(wired or wireless) connection between the personal device and
PC: this provides a better user-experience, since a low-latency
direct connection means that the two devices can be kept in tight
synchronization with each other. As well as splitting content
across the PC and personal device, our architecture also allows
HTML Forms to be split. In this way secure fields (e.g. credit
card details) can be filled in on the trusted personal device,
while fields that do not contain sensitive information (e.g.
delivery dates or product selections) can be filled in on the PC.
In addition to exploring the systems issues surrounding split-
trust web-browsing, we also present a Security Policy Model for
split-trust web-applications and consider a range of attacks
against split-trust systems in general.

The concept of a trusted personal device is an interesting
one, and one which is currently topical within the mobile
computing industry [1, 11]. One could imagine manufacturing a
small, locked-down device with the specific purpose of
augmenting a user's web browsing to provide enhanced security.
Alternatively, one may argue that some existing cell phones or
PDAs already provide a more secure computing platform than
general purpose PCs, and can thus be used as trusted personal
devices providing increased security [6, 23]. Security is in fact a
relative concept as we can raise the bar to prevent a particular
level of attack, but no system is without some weakness.
However, we believe our work provides a practical
improvement over the level of security available to mobile users
as this time. A fuller discussion of what constitutes a trusted
personal device is presented in Subsection 7.1.

1.1 Structure of the Paper
We begin by presenting a system overview that takes

advantage of the potential interplay between untrusted fixed
infrastructure and more trustworthy personal mobile devices
(section 2). We classify the mechanisms used by crimeware-
based attacks and present a set of general design principles that
enable split-trust web applications to address these attacks
(Section 3). Technical details of our split-trust browsing
implementation are then presented (Section 4). Various attacks
against split-trust web-applications are considered with
discussion of how well our architecture defends against each of
them (Section 5). Finally, after describing related work (Section
6) and discussing general design & system issues (Section 7),
we conclude and present directions for future work (Section 8).

2. SPLIT-TRUST SYSTEM OVERVIEW
Figure 1 shows a high-level overview of our architecture

for split-trust browsing. The (untrusted) PC connects to the web
server over the Internet, using HTTP to request web pages in the
usual manner [33] The trusted personal device connects directly
to the PC using a suitable data-link technology (e.g. USB,
Bluetooth, WiFi).

Figure 1 High-level overview of our system for split-trust

browsing

The HTML fetched from the web server contains both

regular content, which is rendered in the PC's browser in the
usual way, and encrypted messages destined for the trusted
personal device. The Remote Device Communication (RDC)
Agent, which runs on the PC, is responsible for forwarding such
messages between the web server and the personal device.
When a message is received by the personal device it is
decrypted and displayed on its screen. Similarly, messages
generated by the personal device (as a result of user input) are
encrypted before being sent back to the web server via the RDC
Agent. The session key used to encrypt these messages is known
only to the trusted personal device and the web server;
crimeware running on the untrusted PC is thus unable to read
the encrypted web content. So, although the RDC itself may be
compromised, this does not compromise the underlying secure
exchanges.

A critical feature of our architecture is that it does not
require the personal device to establish a separate Internet
connection to the web server. Instead we tunnel data sent
between the web server and the personal device over the PC's
existing Internet connection, relying on the RDC Agent to de-
multiplex these two logical channels. This model offers a
number of benefits over the “two separate Internet connections”
approach: (i) it provides a better user-experience, since the low-
latency direct connection between the personal device and PC
means that the two devices can be kept in tight synchronization
with each other; (ii) it does not require the user to incur the extra
cost of a separate Internet connection for their personal device–
e.g. over GPRS or 3G; (iii) the architecture is applicable to
personal devices that do not support Internet connectivity but
still provide direct, point-to-point data connections, e.g. a PDA
with a USB link; and (iv) it enables tight integration with client-
side functionality such as tabbed browsing: when the user clicks
on a different browser tab on the PC, the RDC Agent traps this
event and updates the screen of the user's personal device
accordingly.

(a) (b)

Figure 2 (a) Browsing on the PC while entering security-
critical information via the cell phone; (b) A close-up of the

phone

Figure 2 shows our system being used to make a secure e-

commerce transaction, using a Motorola E680 cell phone as a
trusted personal device. The PC browser is used for non-
security-critical tasks: browsing the product catalogue, making
selections etc. However, when the user starts to purchase the
goods, the form requesting credit card details automatically
appears on their cell phone. The user fills in these private details
via their cell phone's keypad and selects “submit” from their
phone to make the purchase. Crimeware running on the PC is
not able to read the content displayed on the phone; nor is it able
to snoop the user's key-presses to steal their credit card details.

Although, for the sake of simplicity, this paper assumes
that web applications have been written explicitly to support
split-trust browsing, the architecture described could be layered
on top of existing applications via HTML-rewriting proxies. The
design of such proxies and mechanisms for specifying the
required transformations is a topic of future work.

3. SECURITY MODEL
In order to explain the motivation behind our trusted

browsing architecture we first present our threat model and
security policy model [3].

3.1 Threat Model
Attackers' motivation is to steal private and confidential

information, often with a view to committing identity theft and
fraud. We assume that attackers are capable of using crimeware
to mount both passive monitoring attacks and active injection
attacks against the PC. Passive monitoring attacks include
recording everything shown on the PC's display, typed on the
PC's keyboard and transmitted over the network. Active
injection attacks include injecting malicious data packets into
the network, injecting malicious data packets into the direct
connection to the personal device and also injecting fake User
Interface (UI) events into the PC (e.g. spoofing a click on a
hyperlink, or spoofing key-presses to fill-in and submit an
HTML form). Further, we assume that the PC-based browser is
untrustworthy. For example, crimeware running on the PC may
cause the browser to silently redirect the user to an attacker's
web site, or to maliciously generate/rewrite HTML (e.g. modify
link/form targets, add/remove content).

We assume that the user's personal device is free of
crimeware and that attackers therefore have no means of either
recording the contents of its screen or data entered via its
keypad. HTML received via the PC is rendered faithfully in the
personal device's browser, and user-input performed via the
personal device's keypad is relayed correctly back to the PC.

3.2 Security Policy Model
As outlined in subsection 1.2 we address the threat model

presented above by migrating security-sensitive parts of the
interface to a trusted personal device. However, in order to
benefit from the security provided by this browsing model, a
split-trust web application must satisfy the following five
properties:
1. The end-to-end communication channel between the web

server and the trusted personal device must be
authenticated and encrypted. This prevents an attacker
from snooping traffic between the web server and the
phone. It also prevents an attacker from maliciously
injecting fresh data into this channel.

2. All security-sensitive form fields must be filled in via the
trusted personal device. Combined with Property 1, this
prevents the untrusted PC from snooping any security-
sensitive data entered by the user.

3. All security-sensitive information must be displayed only
on the trusted personal device. Combined with Property 1,
this prevents the untrusted PC from snooping any security-
sensitive information served by the web application.

4. The web application must not allow form submissions from
the trusted device to be replayed. This prevents an attacker
from maliciously re-using previous security-sensitive form
data entered on the personal device in subsequent
transactions.

5. All security-critical operations must be initiated (or
confirmed) via a form on the trusted personal device.
Further, there must be sufficient information displayed on
the personal device's screen to specify fully the action
being initiated. Combined with Properties 1 and 4. this
ensures that crimeware on the untrusted PC cannot
subversively initiate an unauthorized security-critical
operation (e.g., a money transfer in an on-line bank)
without alerting the user.
Properties 1 to 3 are self-explanatory; however, Properties

4 and 5 require further elaboration. We will consider these
properties in reverse order, starting with Property 5.

3.3 Property 5
The first part of Property 5 is straightforward: security-

critical operations must be initiated or confirmed via the trusted
personal device. The motivation for this is clear–by forcing
security-critical operations to be confirmed on the trusted
personal device, the untrusted PC cannot subversively initiate
such operations without alerting the user.

The second part of Property 5 is more subtle and protects
against a class of attacks highlighted by Balfanz et. al. [6]. To
understand its purpose, it is first helpful to consider the
following analogy. Unscrupulous Charlie arrives at Bob's office

and says “please sign the following authorization to transfer
$100 from your bank account to Alice's bank account.”
However, while saying this, he hands Bob a piece of paper
which says only “I authorize the money transfer.” Bob signs the
paper and Charlie takes it to the bank. As he passes it to the
cashier he says “here's the authorization to transfer all funds
from Bob's bank account to my bank account.” The cashier
checks Bob's signature and performs this transfer. The security
flaw here is obvious: the authorization slip is not specific
enough: as a result Charlie is able to fool Bob into believing it
means one thing, whilst fooling the bank that it means
something else.

Unless web applications specify confirmation dialogues for
security-critical operations carefully, there is a direct analog of
this attack that can be played out in a split-trust browsing
scenario. Consider the following example. An on-line bank's
web server generates an HTML page which is rendered on the
untrusted PC's browser and contains two links: one with text
“click here to transfer $100 to Alice's bank account”, and one
with text “click here to transfer all funds to Charlie's bank
account”. The browser on the untrusted PC has been subverted
so that it maliciously swaps the link targets over: the link with
text “transfer $100 to Alice's bank account” now points to the
action of transferring all funds to Charlie's bank account and
vice-versa. The user clicks on one of the links and, in
accordance with the first part of Property 5, a confirmation form
appears on the screen of their trusted personal device asking
them to authorize the money transfer. It is now clear why the
text of the confirmation must “specify fully the action being
initiated”. If the confirmation is under-specified–e.g., if the text
reads only “please confirm money transfer”–then the user is not
alerted to the attacker's ploy of swapping the link targets.
However, if the confirmation is specified fully–e.g. the text
reads “please confirm the transfer of all funds from your
account to Charlie's account”–then the user is immediately
alerted to the fact that the action currently being performed is
not the action they thought they had initiated. The user thus
decides not to confirm the action and no money is transferred.

3.4 Property 4
We now turn our attention to Property 4, which specifies

that a web application must not allow form submission
messages from the trusted personal device to be replayed (i.e., a
web application must not accept data arising from the same
form submission action more than once). To see why this is
important, consider the following attack. An on-line banking
system sends a form to a user's trusted personal device asking
them to confirm a money transfer to Alice's account. When the
user submits the form (via their trusted personal device), the
(untrusted) PC records the resulting submit message. Although
an attacker cannot read the contents of this message (since
Property 1 requires that it is encrypted with a key known only to
the personal device and the web server), they can nonetheless
replay it in response to a subsequent transaction. Thus, an
attacker may maliciously initiate another money transfer to
Alice's account (e.g. by spoofing a click-event on the “transfer
money” link in the untrusted PC's browser) and then replay the
user's previous confirmation message in order to complete the
transfer.

Without Property 4 an attacker could thus circumvent our
requirement that users explicitly confirm every security-critical
operation. This is why the explanatory (non-italic) text of
Property 5 observes that it is only when “combined with
Property 4” that it ensures “crimeware on the untrusted PC [is
prevented from] initiating any unauthorized security-critical
operations”.

4. TECHNICAL DETAILS

Figure 3 Architecture diagram showing components running
on both the untrusted PC and the trusted personal device

We have built a prototype split-trust browsing framework
using a commercially available cell phone (Motorola E680) as a
trusted personal device. Our prototype uses Bluetooth [8] for a
wireless connection between the TPD and untrusted PC, relying
on the Bluetooth PAN profile to provide IP connectivity over
the Bluetooth link; the TPD components are designed for
embedded Linux (the operating system running on the Motorola
E680.). In this section we present the technical details of our
implementation. Figure 3 shows the main components of the
system. The Firefox browser runs on the untrusted PC with the
RDC Agent implemented as a Firefox Browser Extension [9].
The cell phone runs a simple cHTML [17] browser which has
been implemented as a Java MIDlet.

On initiating a split-trust browsing session, a user connects
their cell phone to the PC using a local communication
technology of choice: e.g. USB, Bluetooth, or WiFi. They
execute our extended Firefox browser on the PC and start
surfing. As usual, regular (non-split-trust) web sites appear
entirely on the PC. However, if the user visits a web-application
that supports split-trust, then security-sensitive parts of its
interface automatically appear on their cell phone.

The HTML fetched from a split-trust web application
contains (i) regular content, rendered on the PC as usual; and (ii)
a number of AES-encrypted [10], Base64 [16] embedded
messages. Each of these messages contains cHTML content that
may ultimately appear on the personal device's screen. The
RDC Agent, running inside Firefox, extracts embedded
messages from the received HTML and forwards them to the
phone over HTTP (see Figure 3).

The cell phone runs a local HTTP Daemon that receives an
HTTP Request from the RDC Agent and, via CGI scripts, passes
the embedded message contained within it to the Crypto Layer.
There it is decrypted before being rendered in the phone's
browser. The Crypto Layer is also responsible for encrypting the
contents of form fields filled-in on the cell phone before this

data is sent back to the RDC Agent on the PC. To simplify user-
interface issues the phone's browser does not allow hyperlinks;
instead, all hyperlinks reside on the PC-side interface.

In the remainder of this section we describe the
architectural components outlined above in more detail. We start
by showing how messages for the personal device are embedded
into regular HTML pages (Section 4.1); we then describe the
implementation of the RDC Agent (Section 4.2) and briefly
outline the design of the components running on the cell phone
(Section 4.3). For simplicity, our initial description of the
system does not consider the splitting of HTML forms. The
details of how form fields can be split between the PC and
personal device are described separately (Section 4.4). Finally,
we present a performance evaluation of our implementation
(Section 4.5).

<html ...> <head>
 <title>Split-Trust Browsing

Example</title>
 <meta name="split-trust-browsing"

content=""> </head>

<body> <!-- This HTML will be rendered on

the PC browser as usual:>
<h2>Click on a link below to display secure

message on trusted personal device:</h2>

<p><a name="rdc-onClick-0"

class="personaldevice"
href="JavaScript::">Link 1

<p><a name="rdc-onClick-1"
class="personaldevice"
href="JavaScript::">Link 2

<!-- --------------- Messages for the

personal device embedded here: ---------
---------- -->

<form name="rdc-data">

 <!-- Default content, displayed on

personal device when page loaded:>
 <input type="hidden" name="rdc-onLoad-

msg" value="oYW5rcyBmb3IgY2xpY2tpb ...
nZS4=====">

 <!-- This message is displayed on

personal device when user clicks on link
'rdc-onClick-0' -->

 <input type="hidden" name="rdc-onClick-0-
msg" value="WW91ciBWUE4gYWNjb3VudCBk ...
a9gfI======">

 <!-- This message is displayed on

personal device when user clicks on link
'rdc-onClick-1' -->

 <input type="hidden" name="rdc-onClick-1-
msg" value="IGxvZ2luIGRldGFpbHMgYXJl ...
VFNDQ=====">

</form>

Figure 4 An example HTML page containing embedded
messages for the trusted personal device.

4.1 Embedding Split-Trust in HTML
Figure 4 shows an example HTML page that may be

served by a split-trust-enabled web application. A single meta
tag with attribute name="split-trust browsing"
specifies that this page contains embedded messages destined
for a trusted personal device. By examining the contents of form
rdc-data one can see that the page contains 3 such embedded
messages, each stored in the value attribute of a hidden field.
On loading the page Firefox renders the HTML in the usual
way, displaying the <h2> and the two <a> tags on the PC's
screen. (Since the messages for the personal device are
embedded in hidden form fields they do not affect the page
layout.)
 The name attribute of a message's enclosing form field
specifies the event that the message is associated with. For
example, in the page shown in Figure 4, the message contained
within the field entitled rdc-onLoad-msg is forwarded to the
personal device as soon as the browser has finished loading the
HTML. Names prefixed “rdc-onClick” are reserved for
messages triggered by click events.
 In Figure 4 the message contained in the field entitled
rdc-onClick-0-msg is associated with the link defined by
the <a> tag with name rdc-onClick-0. Similarly, message
rdc-onClick-1-msg is associated with link rdc-
onClick-1. When the user clicks on a link, the RDC agent
checks if there is an associated message and, if there is,
forwards it to the trusted personal device. Although not shown
in Figure 4, other names refer to different types of events. For
example, we could have named a link rdc-onMouseOver-3
and provided a corresponding message entitled rdc-
onMouseOver-3-msg.

4.2 RDC Agent
We implemented the RDC Agent as a Firefox Browser
extension, writing it in a combination of JavaScript [13] and
XML [33]. Whenever a page is loaded the RDC Agent first
checks for the presence of the split-trust-browsing
meta tag (see above). If this is not found the RDC Agent stops
processing immediately, ensuring that the extension does not
degrade the performance of non-split-trust sites. If the meta tag
is present, the Browser extension uses the DOM API [13] to
check if there are any <a> tags prefixed rdc-. For each of these
<a> tags an event listener is added with a callback function that
forwards its associated message to the personal device. Finally,
if there is a form field named rdc-onLoad-msg then the
message it contains is forwarded to the personal device
immediately.

4.2.1 Authentication and Key Exchange
A prerequisite to transmitting encrypted messages between

the web server and the personal device is the negotiation of a
session key between these two parties. Several existing Internet
standards define secure key-exchange mechanisms, such as
SSHv2 (rfc4253) [32], IKE (rfc2409) [15] and SSL/TLS
(rfc2246) [12]. Our current implementation uses SSHv2
authentication/key-exchange, specifically diffie-hellman-
group1-sha1 with RSA host keys. We did not use the SSHv2
Diffie-Hellman Group Exchange mechanism due to the

additional round-trip of packets required, but this can easily be
added for increased security if desired. The RDC Agent acts as a
coordinator for the authentication/key-exchange process.

A split-trust web application initiates key-exchange and
authentication by serving an HTML page containing a meta tag
with name="kex-init". The RDC agent detects the
presence of this tag and sends an HTTP Request (R1 in Figure
5) to the personal device requesting its first key exchange
message. The RDC Agent receives M1, contained in the body of
the HTTP Response, and forwards it along as a new HTTP
Request M1’ which is sent to the web server. The web server
responds with its key exchange reply M2, which the RDC Agent
forwards as M2’ to the personal device via another HTTP
Request. The response is sent back to the PC via R2, and the
processes continues. Thus, by making alternate HTTP Requests
between the personal device and the web server, the RDC agent
co-ordinates the flow of cryptographic messages necessary for
key exchange (the dotted lines of Figure 5). Note that the full
diffie-hellman-group1-sha1 protocol requires a third
message that, due to space constraints, is not shown in Figure 5.

Figure 5 Using the RDC Agent to negotiate a key exchange

between the web server and personal device over HTTP
RPC calls.

 When the phone has authenticated the web server (verifying
the host-key by means of a certificate) it displays a confirmation
dialogue on its screen informing the user of the web server's
identity and asking if they want to proceed. Thus, if crimeware
on the PC has silently redirected the browser to an attacker’s
site, this fact will be revealed to the user via their trusted
personal device. (Redirection attacks will be considered more
deeply in Section 5.1).

The value attribute of the kex-init meta-tag contains
a continuation URL akin to a form's action attribute. When the
key exchange/authentication protocol has been completed, the
RDC Agent redirects the browser to this URL. In this way a web
application can request a key exchange and then, once a session
key, SK, has been established, redirect the browser to show a
new split-trust page in which embedded messages are encrypted
with SK. Note that key exchange is not limited to the start of a

split-trust browsing session: the web server can request a new
session key at any time by means of a kex-init meta-tag.

4.3 Components on the Cell Phone
We implemented a prototype Crypto Layer for the cell

phone (see Figure 3). The multi-precision Modular
Exponentiation required for the key exchange/authentication
protocol relies on the open source GNU Multi-Precision
Arithmetic library (libGMP), which we cross-compiled for the
phone. An open-source AES reference implementation was also
cross-compiled for the phone in order to decrypt messages
received from the RDC Agent and the encrypted phone-based
user input.

For technical reasons we were unable to interface our
system with the phone's built-in browser; instead, we
implemented a simple cHTML browser as a Java MIDP
Application in order to display content on the cell phone. The
Java browser interfaces with the (native) Crypto Layer via a
loopback TCP connection. The implementation of the phone's
browser is made considerably easier by the fact that hyperlinks
are not permitted on the personal device (see Section 3).

4.4 Dealing With Forms
So far we have seen how a split-trust web application can

embed encrypted content in HTML pages, and how the RDC
Agent running on the PC can forward this content to be
displayed on the cell phone when specific events occur. Here we
show how this framework can be extended to deal with split
HTML forms in which some fields are displayed on the PC
while others appear (and are filled in) on the cell phone.

Click here to enter credit card

details
...

<form name="myForm" action="..."

method="POST">

<field type="hidden" name="rdc-onClick-0-

msg" value="AKHJ3VAORTU49 ...
LGHUBVEBJ1084XZ0===">

<field type="hidden"
 name="rdc-onClick-0-response" value="">

Figure 6: Form to be displayed on Trusted Mobile

As with regular content, forms to be displayed on the phone
are encrypted and embedded in the HTML messages served by
the split-trust web application. For example the code fragment
in Figure 6.

When the user clicks on the <a> tag named <rdc-
onClick-0> (on their PC) the RDC Agent forwards rdc-
onClick-0-msg to the personal device in the usual manner.
This message can contain a mix of cHTML content and form
fields which are rendered in the phone's browser. If, after
decrypting a message, the phone finds that it contains form
fields, it relays this information back to the RDC-Agent in its
HTTP Response (see Figure 3). This triggers the RDC-Agent to
poll the phone for the user's response (via repeated HTTP
Requests).

The user fills in the form fields via their phone's keypad
and selects “Submit” in their phone's browser. The Crypto
Layer, running on the phone, encrypts this user input and returns
it to the RDC-Agent in an HTTP Response. When an encrypted
response is received, the RDC Agent inserts it into the value
attribute of field rdc-onClick-0-response (see above).
Thus when myForm is submitted, the web application receives
data entered on the cell phone via the contents of this field.

Of course, the untrusted PC may maliciously swap the
encrypted messages in the rdc-onClick-*-response
fields before submission. To protect against this attack the
encrypted message generated by the personal device actually
contains a set of (<fieldname>, <user-input>) pairs. On receipt
of a form input message from the trusted personal device the
web application parses both the fieldname and corresponding
user input ensuring that, even if messages are swapped by the
untrusted PC, the right user input is bound to the right field.

A single form can contain fields displayed on both the PC
and the phone. In the above example, myForm could contain
regular (i.e. not hidden) fields which would be rendered by the
Firefox Browser in the usual way. On submitting the form, the
web application thus receives the values of those fields entered
on the PC, as well as encrypted form response messages from
the personal device.

4.4.1 Form Submission
There are two alternative mechanisms of submitting split-

trust form data back to the web server. First, an application can
specify that a form should be submitted by means of a “submit”
button displayed on the PC's browser. This is achieved by
simply adding a regular submit button to the HTML above.

Second, an application can instruct the RDC Agent to
submit a form automatically as soon as a response is received
from the phone. In the above example the web application can
request this behavior by including:

<field type="hidden" name="rdc-onClick-0-
submittype" value="automatic">

Automatic submission is ideal for scenarios such as phone-
based login: as soon as a username and password are entered
and confirmed on the phone's keypad the web-application
proceeds to the next page. In contrast, manual submission (via a
button on the PC's browser) is often suitable for pages that
contain multiple phone-based forms. In this case users can fill in
each of the forms on their cell phone before finally clicking
submit in the PC's browser to transmit all this data back to the
web application.

For each phone form, a web-application can also include a
corresponding status element, displayed on the PC (e.g. <p
name="rdc-onClick-0-status">). When the RDC
Agent forwards a form specification to the phone, it
simultaneously updates the innerHTML property [13] of the
corresponding status element (rendered on the PC) to inform the
user that the form is “currently being edited on the phone”.
Similarly, when a user response is received, the status element is
updated to notify the user that a “form submission has been
received from the phone”.

4.4.2 Avoiding Replay Attacks
Recall that Property 4 of our Security Policy Model

(Section 3.2) requires that form data entered via the phone must
not be subject to replay attacks. To enforce this property we
require that each encrypted form specification served by the
web application contains a fresh nonce [28] and a timestamp.
The phone's browser automatically copies this information into
its encrypted form response message. On receiving a form
response message the web application decrypts it and then
checks (i) that it has not seen the nonce before; and (ii) that the
response is timely.

4.5 Performance Evaluation
To assess the performance of our implementation we

measured the latency incurred between a user performing an
action (e.g. clicking on a link) and an associated 850 byte
message appearing on the phone's screen. The message is
encrypted using AES with a 1024-bit key and Base64 encoded;
our choice of 850 bytes is very much worst case–we expect
most messages sent to the phone to be significantly smaller than
this.

Our PC was a 2.5GHz Pentium 4 with 512Mb RAM; our
trusted personal device was a Motorola E680 smart phone,
which has a 400MHz Intel XScale (Bulverde) Processor and
32MB RAM / 32MB Flash. Each of the measurements were
averaged over 20 trials. As shown in Figure 7, the latency of
each of the components of the system is as follows:

1. The time taken between the RDC Agent receiving a UI-

event and initiating an HTTP Request containing the
message to be forwarded is negligible (invariably less than
1 ms).

2. With the phone connected to the PC via USB, the time
taken to send the HTTP Request containing the encrypted
850 byte message to the phone is 0.1s (s.d. 0.01s).

3. The time taken to Base64 decode the message on the phone
is 0.2s (s.d. 0.02s).

4. The time taken to AES-decrypt1 the message on the phone,
w/ a 1024-bit key, is 0.38s (s.d. 0.01s).

5. The time taken to send the decrypted message to the Java
Browser (over a loopback TCP connection) and to render
the content on the phone's screen is 0.2s (s.d. 0.05s).

Thus the average end-to-end latency between the user

generating an event on the PC (e.g. clicking on a link) and the
corresponding 850 bytes of content being rendered on the
phone's screen is 0.88s. Even for this worst-case message size
we believe that 0.88s falls within the limits of acceptable
latency for web usage models (since it is comparable to the time
taken to fetch a page from a web server over the Internet). Since
the time complexity of Base64 decoding and AES decryption is
O(n), the latency would reduce linearly with message size.
Furthermore, higher performance processors are filtering into

1 Note that our AES component only performs decryption; it

does not check message integrity. Verifying message integrity
on the mobile device would incur extra-latency (adding a
factor of at most 2 to the measurement reported here).

the design of modern smart phones, which will further decrease
the latency of all cryptographic functions.

Figure 7 Latencies of the individual components of our

implementation (averaged over 20 trials). Error bars show
standard deviations. TPD abbreviates Trusted Personal

Device–in this case, the Motorola E680 phone.

Regarding the performance of key exchange, using libGMP
the Motorola E680 is able to generate a 1024-bit random
number and compute a modular exponentiation using Oakley
Group 2 Diffie-Hellman Parameters [15] in an average of 0.06s
(s.d. 0.004s). Thus the time taken to perform key exchange and
authentication is most likely to be dominated by the round-trip-
times of the HTTP messages initiated by the RDC-Agent (see
Figure 3).

5. ATTACKS AGAINST SPLIT-TRUST
BROWSING

In this section we consider a number of attacks against
split-trust browsing and consider how well we can defend
against them.

5.1 Phishing
Crimeware attacks are different from conventional phishing

attacks: whereas the former rely on malicious software running
on users' machines (e.g. key-loggers), the latter rely entirely on
social engineering, attempting to fool users into unwittingly
entering security-sensitive information into attackers' websites.
This paper has motivated split-trust browsing primarily as a
technique for addressing PC-based crimeware attacks. However,
the general split-trust browsing technique can also be leveraged
to address conventional phishing. For example, the server may
validate the identity of the user by means of challenge/response
authentication with their personal device (cf. one-time
passwords). Alternatively, we may combine split-trust browsing
with a password hashing [26] scheme. In this case, a password
entered on the personal trusted device is hashed with some
known properties of the website (including its domain name)
before being sent back to the server.2 Both these techniques
would make it harder for phishers to obtain reusable credentials.

2 Although password-hashing can be implemented directly on
the untrusted PC [26] this does not protect against OS-level key

Another possible phishing-style attack involves redirecting
the untrusted PC to a similar-looking domain name and then
presenting a valid certificate for the fake domain. Although, at
session-initiation time, a message would appear on the trusted
personal device asking if the connection should proceed, the
user may not spot that the company/domain name is incorrect.
They may therefore click continue and unwittingly connect to
the attacker's server.

This is a general problem with certificate-based
authentication that we do not claim to have solved. However, as
a side note, we observe that we can leverage users' mobile
devices to make physical certificate exchange practical. For
example, we may forbid the trusted personal device from
accepting any certificates over the network. Instead, users may
present their trusted personal devices at trusted retail outlets and
high-street banks in order for the companies' certificates to be
physically uploaded. Although this makes the system more
cumbersome to use, it does give users reason to believe that the
certificates on their device are only from reputable companies,
addressing the redirection problem.

5.2 Active Injection Attacks
Since we assume that the PC may be entirely

compromised, crimeware has the capability to rewrite the
HTML in the PC's browser–e.g. swapping link targets around,
adding new links, modifying text. We address this issue with
reference to our Security Policy Model (Section 3.2). From
points 4 and 5 of the Security Policy Model we know that even
if the user is fooled into initiating a security-sensitive operation
due an HTML-rewriting attack, all that will happen is that a
fully-specified confirmation dialogue appears on their trusted
personal device. If the user does not confirm the action via the
trusted personal device the web-application will not carry it out.
Similarly, since points 1-3 of the Security Policy Model require
the web application to encrypt all security-sensitive content, an
HTML rewriting attack cannot cause this information to be
revealed.

The problem of active-injection (see Section 3.1) is dealt
with in the same way. If crimeware on the untrusted PC
maliciously attempts to initiate a security-sensitive operation
(say, by spoofing a click on a hyperlink) then our Security
Policy Model dictates (i) that no security-sensitive operations
will be performed without first requesting confirmation via the
trusted personal device; and (ii) that, since security sensitive
information is always encrypted, it will not be revealed.

Another form of HTML rewriting attack relates to form
submission. In this case the untrusted PC may maliciously put
an encrypted user-input message received from the personal
device into the wrong form field before completing a form
submission (see Section 4.4.1). The aim of this attack may be to
fool the web application into binding the wrong piece of user-
input to the wrong form field. Recall that (from Section 4.4.1)
that we deal with this attack by ensuring that encrypted user-
input messages generated by the trusted personal device contain
(<fieldname>, <user-input>) pairs, which are parsed by the web
application. Since crimeware on the untrusted PC cannot change

logging attacks. Thus we would implement password-hashing
on the trusted device.

the content of the encrypted messages it cannot cause the wrong
piece of user-input to be associated with the wrong form field.
Also, in accordance with point 4 of our Security Policy Model,
we ensure that crimeware cannot replay form submissions (see
Section 4.4.2).

It is worth observing that attacks against the RDC Agent
directly are really just special cases of HTML-rewriting/active
injection attacks.

5.3 Message Re-Ordering Attacks
A major difference between our architecture and

conventional secure transport protocols (such as SSH [32]) is
that we do not embed sequence numbers in encrypted messages.
A man-in-the-middle (including, of course, crimeware on the
untrusted PC) is thus able to re-order the messages in transit
between the web-application and the trusted personal device.

Our omission of a sequence number is quite deliberate; it
would provide no additional security in the context of our
architecture. The reason for this is because crimeware on the
untrusted PC is already capable of mounting active-injection
attacks. Why bother to preserve the order in which packets were
sent by the web-application when the order in which they were
requested can be spoofed so easily? Instead, we observe that
message re-ordering attacks are just a subset of HTML rewriting
and active-injection attacks, and address them in the same
manner: not by preventing them from happening, but by
designing web-applications in such a way that it does not matter
if they do happen–i.e. with reference to our Security Policy
Model.

As a brief aside, note that one may propose an alternative
split-trust web-browsing framework in which all clicks on
hyperlinks are initiated (or somehow confirmed) on the personal
device. In this context, SSH-style sequence numbering would
provide some value, since the order in which the web-
application sends its messages is worth preserving. However,
the downside of this scheme is that the requirement to
initiate/confirm all clicks via the personal device would make
the system cumbersome to use. Thus, we argue that our Security
Policy Model finds a sweet-spot on the security-usability
spectrum for split-trust applications.

5.4 Social Engineering Attacks
Split-trust browsing requires users to understand a simple

principle: trust your personal device, not the PC. However,
attackers may conspire to make users doubt this principle
causing them (say) to unwittingly confirm a security-sensitive
operation via their trusted personal device.

For example, the untrusted PC may perform an HTML-
rewriting attack, maliciously adding the text “you will now see a
confirmation dialogue appearing on your personal device; please
click confirm”. At the same time, it may use an active-injection
attack to initiate a security-sensitive operation. The question is,
when the confirmation dialogue appears on their personal
device, will users remember the “trust your personal device, not
the PC” principle, or will they be fooled into clicking on
confirm?

We believe that this type of attack is dangerous–the success
of phishers suggests that some users will always be duped by
this kind of ploy. However, although split-trust browsing is not

fool proof against attacks of this nature, it still raises the bar.
Without split-trust browsing, an active-injection attack
perpetrated by crimeware running on the PC would simply
result in a security-sensitive operation being performed–the user
would not have any chance to prevent it. With split-trust
browsing crimeware has to simultaneously initiate the security-
sensitive operation and successfully fool the user into OK-ing
the fully-specified confirmation dialogue on their phone.

Extensive user testing is required to determine how users of
split-trust web applications may respond to this type of attack.

6. RELATED WORK
The idea of simultaneously using multiple devices to

access applications and data has been explored extensively by
the research community [21, 25]. Our work adopts these ideas,
using them to protect against PC-based crimeware attacks. We
are also influenced by the Situated Mobility [24, 31] and
Parasitic Computing [22] models of ubiquitous computing, in
which small mobile devices (e.g. cell phones) co-opt computing
resources already present in the environment (e.g. public
screens) to facilitate interaction with their users.

In the first author’s previous work [29], split-trust is
applied at the framebuffer level of a thin-client/server system. In
that framework it is possible for the user to censor information
on the public terminal, using the (smaller) display of the trusted
device as a “lens” to “reveal” parts of the censored display. This
paper explores a different level of abstraction at which the user
interface can be split: namely, the HTML level. The advantage
of the framebuffer approach is that users can run unmodified
desktop applications; the benefit of the approach described in
this paper is that we can exploit the additional structure of
HTML (as opposed to pixels) to provide a more natural user-
interface split between trusted and untrusted devices.

Balfanz and Felton demonstrated the idea of splitting an
application between a trusted PDA and untrusted PC in the
context of email signing [6]. In this paper we extend their idea,
presenting a general architecture for split-trust web
applications.

Ross et al. developed a web-proxy which detects security-
sensitive words and phrases in HTML content, replacing them
with code-words. Users can simultaneously connect their PDA
to the proxy in order to download a mapping from code-words
back to their original text [27]. Ross' work does not allow
HTML to be split generally and, most critically, does not allow
data-entry to be performed via the PDA; as a result his system
does not protect against key-logging and active injection
attacks. We believe our architecture for splitting HTML
generally, our ability to migrate user-input to the trusted
personal device to avoid PC-based key-logging attacks, and our
Security Policy Model for generalized split-trust web-
applications is a significant advance on Ross' work.

Ross' web-proxy [27], and other previous work on split-
trust architectures [23] require the personal device to open a
dedicated Internet connection to a trusted server. In contrast,
one of the interesting aspects of our split-trust framework for
web applications is that we are able to embed encrypted
messages in the untrusted PC's HTML, relying on the RDC
Agent to de-multiplex these two logical channels. Although it
does not affect the security properties of the system, for the

reasons stated in Section 3.2, we believe that this approach leads
to significant usability benefits.

Recently researchers have considered an alternative to
split-trust applications in which a trusted mobile device is used
to establish the trustworthiness of a public terminal [14]. This
provides a usage model whereby, once the trustworthiness of the
public terminal has been established, one proceeds to use it
exclusively, without looking at the trusted personal device
again. Whilst this may present some usability advantages, the
disadvantages of this approach are (i) the public terminal
requires a Trusted Platform Module (thus exposing the
architecture to the general problems surrounding TPMs [2]); and
(ii) since only the integrity of the software is verified, these
systems do not protect against hardware attacks (e.g. keyloggers
in compromised keyboards). A hybrid approach is presented in
[20] in which a mobile device is used to both verify the integrity
of software running on an untrusted terminal, and to facilitate
secure input.

Previous work on split-trust systems [6, 23, 27] has not
considered how applications may be written to minimize trust in
the client PC. We believe that our Security Policy Model is an
important contribution in this respect. Whereas Oprea et. al.
admit that they are forced to “trust [the client PC] to a certain
extent” [23], our Security Policy Model demonstrates that it is
possible to design split-trust applications that put no trust
whatsoever in the client PC.

Recent advances in mobile device technology make it
possible for users to browse the web conveniently and
effectively using solely their phone or PDA. This fact does not
undermine the utility of the split-trust model, however, since
there will always be many situations where one would prefer to
browse the web on a full-size desktop PC as opposed to on a
mobile device (e.g. whilst at home or at work)–the split-trust
model applies to these scenarios. Also, as mobile devices
become increasingly complex they necessarily become less
trusted, until ultimately one requires a separate, simpler TPD to
use in conjunction with their phone or PDA! This scenario is
actually less ridiculous than it first appears since the simpler
TPD could be embedded within the form-factor of the mobile
device itself. In this model special purpose hardware could even
share the screen and keypad between the TPD and (untrusted)
Application Processor (AP) in such a way that (i) the
keypad/display is only accessible to either the TPD or the AP at
any given time; and (ii) the user is given clear, unspoofable
indication of this modality (e.g., an LED connected directly to
the display/keypad switching circuitry). A TPD embedded in the
same casing as an otherwise untrusted personal device may
either be used in conjunction with desktop PCs (as described in
this paper), or in conjunction with the regular web browser on
the personal device itself.

7. DISCUSSION
This section considers several aspects of the split-trust

browsing model to clarify premises & considerations during the
planning of this project.

7.1 What Makes a Personal Device Trusted?
Ideally, one could imagine designing and manufacturing

trusted personal devices specifically for split-trust browsing.

Such devices could be technically very simple supporting only
basic I/O capability, a data-link technology that enables direct
connection to a PC (e.g. USB or Bluetooth), cryptographic
functionality and a stripped down cHTML browser. A security-
focused design from the outset, combined with its technical
simplicity could make such a product a significantly more
trusted platform than a modern general purpose PC.

From a more pragmatic perspective, some security
researchers claim that some existing cell phones and PDAs
already provide a more trusted computing platform than general
purpose PCs [6, 23]. In particular: (i) users only rarely install
privileged applications on their phones3 reducing the risk of
Trojan-based crimeware; and (ii) whereas it is often easy for
attackers to gain physical access to PCs in order to install
crimeware, it is much harder to gain physical access to a users'
cell phone.

Thus, whilst the best trusted personal devices would be
designed specifically for that purpose from the outset, we
believe that, in the short term, users could still benefit from
split-trust browsing with their existing PDAs or cell phones.
(We note that the architecture presented in this paper is
applicable regardless of the implementation details of trusted
personal devices.)

A number of manufacturers are starting to incorporate
hardware into cell phones specifically to provide strict process
isolation and to manage encryption keys/private data [1, 11].
We see this as a promising sign, suggesting that security is
increasingly being seen as an important aspect of mobile
computing devices. Such technology has the potential to isolate
trusted mobile applications (such as application-support
required for split-trust browsing) from the effects of mobile
phone viruses [7] and malicious code.

7.2 Generalizing Our Architecture
The architecture presented in Section 4 is just one of a

number of possible implementation alternatives, each with their
own advantages and shortcomings. For example, we may have
chosen to implement the RDC Agent as an HTTP proxy that
runs as a native process on the PC. This has the benefit of
enabling one RDC Agent to work with multiple browsers;
however, it makes it more difficult for the RDC Agent to
respond to user-interface events occurring within the browser4.

Similarly, we may have chosen a different embedding
strategy for messages destined for the trusted personal device, or
a different mechanism for co-coordinating key exchange. The
purpose of Section 4 is thus not to present the definitive
architecture for split-trust browsing, but instead to demonstrate
that such an architecture can be built on top of existing
infrastructure whilst achieving acceptable performance.

3 Many phone applications that users install are sandboxed Java
MIDP applets that are not capable of general key-logging or
screen-grabbing.

4 For example, the RDC Agent presented in Section 4.2 works
well with Firefox's tabbed browsing–when the user clicks on a
different tab, the RDC Agent traps this event and forwards the
new page's rdc-onLoad-msg to the user's personal device

There are a number of ways that the architecture presented
in this paper could be generalized. For example, in its current
form, the trusted personal device only stores one session key at
a time; thus, when a new split-trust session starts, the previous
one is automatically closed. To avoid this we could borrow from
SSL client design, enabling the trusted personal device to
maintain a table of active session keys indexed by the domain of
the current URL.

There are also a number of places where the mechanism for
splitting content between PC and personal device could be
generalized. For example, our current implementation does not
allow images to appear on the personal device. This
functionality could be added (say) by allowing image data to be
embedded directly in the cHTML forwarded to the personal
device. Similarly, one may wish to allow hyperlinks to appear
on the trusted personal device (a feature which our current
architecture does not allow). Of course, it is unclear whether
these generalizations would have a positive or a negative effect
on the overall usability of the system. Further research is
required to answer such questions.

7.3 Usability Issues
Although this is primarily a mobile systems-security paper,

there were some usability issues that came to light during our
implementation work which we choose to document here.

On the PC screen there is a clear need to visually
differentiate between links that cause new content to appear on
the PC and links that cause new content to appear on the
personal device. To address this issue we used a style-sheet that
defined a class of “personal device link”, rendering them with a
highlighted background. A web application uses the class
attribute to mark these links (see Figure 4).

The factor that we found made the most significant
difference to usability is at first a seemingly trivial concern: the
ability to stick the personal device on the side of the PC
monitor. This enables both hands to be free for mouse/keyboard
input; furthermore, the proximity between the PC display and
the phone display enables the user to keep them both in their
peripheral vision simultaneously. As a result, the user
experiences virtually no overhead in managing the two displays:
instead, they are able to treat the two logical displays as one.

8. CONCLUSIONS
Crimeware is becoming a serious problem, threatening to

take over from phishing as the dominant form of cyber-crime in
the not too distant future [5]. The web's security model
(HTTPS/SSL) protects data as it is transmitted between client
and server, but does not prevent crimeware attacks in which the
end-points themselves are compromised. In this paper we have
proposed an architecture for split-trust browsing through mobile
composition that allows users to combine their PC with a trusted
personal device to fight crimeware (Section 1).

Our architecture requires web services, public terminals
and mobile devices to run special software to facilitate split-trust
browsing. Installing the required application on the mobile
device is unlikely to pose a problem; neither is installing the
software on the untrusted terminal (we have shown this can be
packaged and distributed in the form of a browser plug-in).
However, the fact that service providers also have to modify

their applications is a likely barrier to adoption. To address this
issue, an interesting topic of future work would be to implement
HTML-rewriting proxies that impose a split-trust policy over
unmodified web applications. A simple and generic example of
such a proxy would be one that sent all password fields in
HTML forms to the mobile device while leaving the rest of the
HTML unmodified. More complicated split-trust policies could
be written programmatically for particular applications, perhaps
in a policy-language designed specifically to express split-trust
transformations. Of course, such proxies would have to be
trusted.

In future work we would like to perform usability testing
around the split-trust model. We believe it would be particularly
interesting to evaluate the impact of some of the social-
engineering attacks against split-trust browsing (see
Section 7.4).

As we have discussed in Section 7 split-trust web browsing
is not a panacea. However, we do believe that it has the
potential to provide consumers with a significantly greater
degree of security in the face of ever-increasing crimeware and
phishing attacks. Of course, our system delivers value
proportional to the security of the trusted personal devices
employed. It is our hope, therefore, that by presenting
application scenarios for secure mobile computing, split-trust
research motivates vendors to incorporate security-enhancing
technologies (e.g. ARM's TrustZone [1] and Intel's Mobile
A [11] into personal devices.) I

R EFERENCES
[1] ALVES, T., AND FELTON, D. TrustZone: Integrated

hardware and software security, July 2004. ARM Report.
[2] ANDERSON, R., Trusted Computing FAQ. Available at:

http://www.cl.cam.ac.uk/users/rja14/tcpa-faq.html
[3] ANDERSON, R., STAJANO, F., AND LEE, J.-H. Security

policies. In Advances in Computers,Vol.55 (2001),
Academic Press.

[4] ANTI-PHISHING WORKING GROUP (APWG). Phishing
activity trends report, June 2005. http://antiphishing.org/.

[5] ANTI-PHISHING WORKING GROUP (APWG) expands
online identity theft charter. Aug. 3rd 2005 edition of
Business Wire. Available: http://www.businesswire.com/.

[6] BALFANZ, D., AND FELTON, E. Hand-held computers
can be better smart cards. Proc. of USENIX Security 1999.

[7] BBC NEWS: First mobile phone virus created: At
http://news.bbc.co.uk/1/hi/technology/3809855.htm.

[8] BLUETOOTH SPECIFICATION VERSION 1.1.
Available at: http://www.bluetooth.com/.

[9] BOSWELL, D., KING, B., OESCHGER, I., COLLINS, P.,
AND MURPHY, E. Creating Applications with Mozilla.
O’Reilly, 2002.

[10] CHOWN, P. Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security (TLS). RFC
3268.

[11] COLE, B. Intel hardwires security in new mobile IA
PXA27x CPU family. http://iapplianc-
web.com/story/OEG20040412N0006BC.htm.

[12] DIERKS, T.” The TLS protocol”, IETF Network Working
Group RFC 2246, January 1999.

[13] FLANAGAN, D. JavaScript: The Definitive Guide.
O’Reilly, 2002.

[14] GARRISS, S., CACERES, R., BERGER, S., SAILER, R.,
VAN DOORN, L., & ZHANG, X., "Towards Trustworthy
Kiosk Computing", Proc. of IEEE HotMobile 2007

[15] HARKINS, D., AND CARREL, D. The Internet Key
Exchange. RFC 2409.

[16] JOSEFSSON, S. The Base16, Base32, and Base64 data
encodings. RFC 3548.

[17] KAMADA, T. Compact HTML for small information
appliances, 1998. W3C Note: Available: http://www
.w3.org/TR/1998/NOTE copactHTML19980209/

[18] LECLAIRE, J. Pharming and SPIM plaguing Internet. 4th
June 2005. TechNewsWorld. At http://www.
technewsworld.com/story/news/42054.html.

[19] LEYDEN, J. UK police issue “vicious” Trojan alert. 13th
August 2004. The Register. Available from
http://www.theregister.co.uk/2004/08/13/trojan phish/.

[20] McCUNE, J., PERRIG, A., REITER, M. Bump in the
ether: a framework for securing sensitive user input. In
Proceedings of USENIX 2006. USENIX Association.

[21] MYERS, B. A. Using handhelds and PCs together.
Communication of the ACM 44, 11 (2001), pp34–41.

[22] NARAYANASWAMI, C., RAGHUNATH, M. T.,
KAMIJOH, N., AND INOUE, T. What would you do with
100 MIPS on your wrist? Tech. Rep. RC 22057 (98634),
IBM Research, January 2001.

[23] OPREA, A., BALFANZ, D., DURFEE, G., AND
SMETTERS, D. Securing a remote terminal application
with a mobile trusted device. In Proceedings of ACSA
2004. Available at: http://www.acsa-admin.org/.

[24] PERING, T., AND KOZUCH, M. Situated mobility: Using
situated displays to support mobile activities. In Public and
Situated Displays: Social and Interactional Aspects of
Shared Display Technologies (2003), Kluwer.

[25] RAGHUNATH, M., NARAYANASWAMI, C., AND
PINHANEZ, C. Fostering a symbiotic handheld
environment. Computer 36, 9 (2003), pp56–65.

[26] ROSS, B., JACKSON, C., MIYAKE, N., BONEH, D.,
AND MITCHELL, J. C. Stronger password authentication
using browser extensions. In Proc. of the USENIX Security
Symposium (2005), USENIX association.

[27] ROSS, S. J., HILL, J. L., CHEN, M. Y., JOSEPH, A. D.,
CULLER, D. E., AND BREWER, E. A. A composable
framework for secure multi-modal access to Internet
services from Post-PC devices. Mobile.Network
Applications. 7, 5 (2002), 389–406.

[28] SCHNEIER, B. Applied cryptography: protocols,
algorithms, and sourcecode in C. John Wiley & Sons, New
York, 1994.

[29] SHARP, R., SCOTT, J., AND BERESFORD, A. Secure
mobile computing via public terminals. Proceedings of
Pervasive 2006. Springer-Verlag.

[30] SOPHOS PRESS RELEASE. UK online bank accounts put
at risk by new trojan. Available from http://www
.sophos.com/virusinfo/articles/ukbanktrojan.html.

[31] WANT, R., PERING, T., DANNEELS, G., KUMAR, M.,
SUNDAR, M., & LIGHT, J. The personal server:
Changing the way we think about ubiquitous computing.
Proc. 4th Int. Conf. on Ubiquitous Computing, 2002,
pp194–209. Goteburg, Sweden, Springer LNCS 2498.

[32] YLONEN, T. SSH transport layer protocol. RFC 4253.
[33] XMLHTTP.Available at:

http://en.wikipedia.org/wiki/XMLHttpRequest.

