

Enabling Pervasive Collaboration
with Platform Composition

Trevor Pering, Roy Want, Barbara Rosario, Shivani Sud, Kent Lyons
Intel Research Santa Clara

{trevor.pering, roy.want, barbara.rosario, shivani.a.sud, kent.lyons}@intel.com

Abstract. Emerging pervasive computing technologies present many opportu-
nities to aid ad-hoc collocated group collaboration. To better understand ad-hoc
collaboration using pervasive technologies, or Pervasive Collaboration, a de-
sign space composed of three axes (composition granularity, sharing models,
and resource references) is outlined, highlighting areas that are only partially
covered by existing systems. Addressing some of these gaps, Platform Compo-
sition is a technique designed to overcome the usability limitations of small
mobile devices and facilitate group activities in ad-hoc environments by ena-
bling users to run legacy applications on a collection mobile devices. The asso-
ciated Composition Framework prototype demonstrates a concrete implemen-
tation that explores the applicability of existing technologies, protocols, and
applications to this model. Overall, Platform Composition promises to be an
effective technique for supporting collaborative work on mobile devices, with-
out requiring significant changes to the underlying computer platform or end-
user applications.

Keywords. Pervasive technologies, ad-hoc collaboration, mobile devices, re-
source sharing, platform composition.

1. INTRODUCTION
Collocated collaboration is a highly dynamic and social activity where groups of peo-
ple share information and create shared artifacts. Pervasive Collaboration enables us-
ers to share information using highly mobile and capable pervasive computing tech-
nologies such as smart phones, Mobile Internet Devices (MIDs), laptops, and large-
screen displays. For example, the wealth of devices commonly found in corporate
meeting environments could be used to enable more interactive group presentations.
Studies of specific collaborative applications such as gaming [33], photo-sharing [4],
and general file-sharing [35], detail how such platforms enable new collocated ex-
periences for specific applications. However, in order to support a wide range of de-
vices and generalized applications, collaborative middleware solutions have spanned
a diverse design space consisting of collaboration granularity, sharing models, and re-
source referencing, leading to a number of different supporting middleware solutions.

Platform Composition is a technique that integrates standard computing components
to support effective collaborative work by wirelessly combining the most suitable set
of resources available on nearby devices. It is particularly well suited for ad-hoc tasks
on wireless mobile devices such as laptops and advanced mobile phones: seamlessly
incorporating fixed infrastructure such as projection displays. While these devices are
becoming pervasive, their small form factors often impose usability challenges for
supporting collocated group work. Composing devices enables them to act as a uni-

fied platform, enabling users to more easily overcome their individual limitations. The
Platform Composition concept specifically refers to connecting devices together using
standard distributed network protocols in such a way that existing familiar applica-
tions can be run unmodified. For example, it could be used to combine the file shares
and displays of two laptops in order to run a standard application like Photoshop, ena-
bling two users to more easily collaborate. This concept builds on the general notion
of composition tailorability [34], but focuses on adapting the supporting computing
platform, instead of changes to the end-user applications.

In order to understand how commonly available platforms and services support the
general concept, the Composition Framework prototype provides a specific imple-
mentation of Platform Composition along with the user interface necessary to invoke
standard platform services. By design, it is orchestrated around utilizing existing stan-
dards to support familiar applications on ad-hoc sets of devices. Although the under-
lying services and protocols used to share data among devices are not themselves
new, the system instead focuses on the centralization and coordination of the sharing
process. Experience with the Composition Framework highlights the efficacy of Plat-
form Composition and informs a discussion of how existing systems can be modified
to better support mobile ad-hoc collaboration.

The key contribution of this work is a focused understanding of how pervasive tech-
nologies can be used to support small-group collocated collaborations. The Composi-
tion Framework is the implementation of the Platform Composition concept, which is
designed to support Pervasive Collaboration. Each of these three aspects provides an
individual contribution to understanding pervasive collaboration applications:

1. The Pervasive Collaboration Design Space gives a concrete structure within
which to understand how different pervasive technologies support collaboration.

2. The Platform Composition concept addresses several gaps in the pervasive col-
laboration design space by allowing the creation of dynamic ad-hoc collaborative
device ensembles that support interaction using familiar applications.

Figure 1: A Platform Composition showing the logically composed platform cre-
ated out of the display and storage services from each user’s individual device.

Composed
Platform

3. The Composition Framework prototype highlights how existing services can be
adapted to support collaboration as well as provides a system from which to col-
lect observations on how users relate to the system.

Motivating Scenario
In the following detailed scenario, depicted in Figure 1, motivates Platform Composi-
tion by describing how a few friends meet in a café to create a birthday slideshow for
their friend Kim:

Sam arrives first and starts to create a slideshow on his laptop adding some text
and using some images he has on his system. By the time Julia arrives, he has a
basic slideshow put together. To see his work, Julia mirrors Sam’s display onto
her laptop. She immediately thinks of a couple of funny captions she wants to in-
clude and adds the text while Sam discusses the images he selected.

Julia mentions that on the bus ride over she had spent some time browsing
through her photo collection and found a couple of additional images to include.
She shares her file collection with Sam’s computer and uses the shared display
to show him the specific images she wants. Sam nimbly drags and drops the pic-
tures into the document from the shared folder.

At that point, Martin, a mutual friend, enters the café and stops by to say
‘Hello.’ He sees them working on the slideshow and realizes he has a great im-
age in his email they could use. Using his Mobile Internet Device, he browses
though his inbox, to find the image. They connect their clipboards together, al-
lowing them to copy/paste the images between devices, both into the document
Sam is working on and into Julia’s personal collection.

Sam and Julia continue working on the document as Martin goes off to order his
coffee. Julia feels that some of the images need a little editing: Sam makes his
file share available to her, and she uses an image editing application on her ma-
chine to touch-up the photos. All done, they put their systems away and head off
to Kim’s birthday party, implicitly disconnecting their shared services.

Figure 2: Example sharing setup for the introductory scenario, showing how dis-
play, storage, and clipboard can be shared among mobile devices to form a com-
posite collaborative working environment utilizing a variety of applications.

Display

Storage

Julia’s
Laptop

Sam’s
Laptop

Martin’s
MID

Clipboard

Sam’s tasks:
Slideshow Editing
Image Browsing

Martin’s tasks:
Image Browsing

Julia’s tasks:
Image Browsing
Slideshow Editing
Image Editing

In this scenario, Sam, Julia and Martin compose their systems to create a logical ag-
gregate platform using several different platform-level services, highlighted in Fig-
ure 2. They dynamically shift between sharing their display, file storage, and clip-
board between their computers in order to accomplish their task as a group.
Furthermore, they use a collection of standard applications to edit the main document,
share personal content, and edit individual images using different resources from all
three individuals’ devices.

Currently, such interactions are problematic due to the numerous steps needed to
share distributed content and difficulties resulting from interacting in mobile envi-
ronments. For example, one commonly employed solution is using email to exchange
images between users, even though they may be sitting right next to each other. Email
requires people to a priori decide which specific images to share and incurs an inter-
action overhead through an external (to the task) email application, and routes all in-
formation through supporting infrastructure.

Alternately, collaborative sharing can be moved into the physical world, either
through the motion of people or devices. Two people can share one display, but it can
be difficult for multiple people to crowd around one screen. Similarly, sharing a USB
memory stick between two computers would limit data sharing to a batch transfer of
files, preventing any dynamic sharing of data between devices. As a result, these ap-
proaches are functional but do not necessarily offer the best collaborative experience.

THE PERVASIVE COLLABORATION DESIGN SPACE
This section highlights three system design issues (Figure 3) that characterize mobile
collaboration systems. First, composition granularity impacts the nature of collabora-
tion spaces formed by users and the steps they must take to integrate with legacy ap-
plications. Second, sharing models governs how users interact with the underlying
data and how shared resources are managed. Third, resource referencing refers to the
different ways resources can be named in a system, underscoring both the infrastruc-
tural needs of the system and mechanisms by which users relate to technological con-
structs. A clear understanding of these various design options is useful to understand
how current systems exploit various aspects of pervasive technologies.

Composition Granularity
Within the context of modern operating systems, resources can be shared between
systems at a number of different granularities. There are three primary levels of
granularity which can be used to support the interactions between systems:

Events: Fine-grain sharing can be accomplished through events, which take on the
form of small, individual occurrences that stream together to form higher-level ac-
tions. User interface events, such as mouse movement or button presses are proto-
typical examples of event level sharing: each individual event is very small and
short lived, but by combining multiple events together a cohesive stream of actions
can be formed to interact with a remote system. The iRoom [13] system utilizes
event level sharing in a collaborative room environment. It employs a centralized
infrastructure for sharing events among mobile devices and fixed infrastructure to
create a unified distributed work environment.

Sharing Models

Composition Granularity

Figure 3: Composition design spaces. Although representing distinct axes, each
spectrum follows the general pattern ranging from small, individual elements to
more encompassing coordinated constructs.

Events Objects Services

Independent Coordinated Mirrored

Resource Referencing

Ad-Hoc Familiar Well-Known

Objects: Medium-grain sharing relies upon the sharing of individual objects between
systems. These objects represent persistent individually meaningful entities that can
be acted upon in a variety of ways. Unlike event sharing, objects are persistent, and
represent more data than is directly transferred. Casca [6] supports object-level
sharing and enables users to create shared “converspaces” in which objects such as
files and printers are placed to be made available to other users; i-Land [32] simi-
larly allows objects to be managed within a collaborative space with many display
surfaces. Multibrowsing [14] exposes web pages as objects layered on top of the
iRoom event mechanism: persistent web objects are encoded as events, which in-
corporate transient properties such as the target display screen.

Services: Coarse-grain sharing is accomplished through sharing entire services from
the platform, which are integrated with the underlying operating system to provide
transparent application access to the associated resources. For example, access to a
network file share represents a collection of file objects available to an application
in a transparent manner. Like object sharing, service sharing has the quality of per-
sistence; however, it is less specific in the semantics about what is being shared and
more flexible in terms of legacy application support. Sharing services is currently
possible piecemeal: users can use basic utilities to share services between their de-
vices, but there is no coordinated application for this capability.

Collaboration systems such as the iRoom, Casca, and Platform Composition each
provide the user with a different primary mechanism for sharing, encompassing a
trade-off between fine-grain control using events and simpler construction using
coarse-grain sharing. The iRoom, for example, makes it very easy to remote control
systems with keyboard and mouse events, but will incur an extra step in order to share
a file directory between systems. Casca makes sharing collections of files among us-
ers easy, but would require extra mechanisms to share keyboard and mouse events be-
tween systems. Platform Composition, on the other hand, provides transparent access
to remote system level services, but requires user interaction in order to share events
or objects between systems. Composition granularity, therefore, becomes a primary
differentiator between these systems.

Application Sharing Models
Similar to the different levels in which sharing can be induced between systems, indi-
vidual collaborative episodes can be managed on different levels [2]. These levels are
similar to the composition granularity described in the previous section, but manifests
themselves more directly in users’ work practice in terms of mechanisms for conflict
resolution and data synchronization. Application sharing models can be broken down
into three levels:

Independent: An application can share data independently of other systems in such a
way that changes are independently applied to each system and loosely propagated
to other instances. For example, one implementation of a calendaring application
might handle meeting requests between users but operate on different underlying
databases (one per user). As a result, the instance of one appointment will not be
inexorably linked to others. Independent sharing is supported by many variants of
distributed single-user collaboration-transparent systems, such as email or personal
calendars. Independent sharing offers no direct mechanism for conflict resolution,
since there are two separate entities that only loosely correlate – relying on higher-
level resolution mechanisms.

Coordinated: Sharing multiple views of the same underlying data enables coordinated
sharing. Using the same calendaring example, the application could open up multi-
ple views of a shared calendar, such that all views show the same underlying data
but from different perspectives (e.g., maybe showing different days). Coordinated
sharing allows multiple people flexible access to shared data, allowing shared con-
text with independent interaction; conflict resolution is a key aspect of coordinated
sharing, but is often handled on an application-specific basis. Coordinated sharing
is supported by a wealth of collaboration-aware [17] systems, exemplified by pro-
jects such as the Coda filesystem [28] and TeamRooms [27].

Mirrored: Finally, applications can be shared by exactly duplicating all aspects of
presentation, from the underlying data set to the visual representation and interac-
tion. This level of sharing enables users to share interaction context while working
on a common dataset. For example in a calendar application supporting mirroring,
users could be using the mouse to point to a specific day and say “How about we
schedule a meeting here?” Here, the system sharing is supplying the necessary re-
lated context. This interaction allows multiple people to coordinate directly, de-
creasing the interaction overhead but preventing independent operations. This level
of application interaction is supported by services such as VNC [26] that support
remote-desktop collaboration.

A challenge for collaborative systems is to provide support across multiple applica-
tion sharing models [2], essentially enabling users to use the appropriate model at dif-
ferent stages of their overall task, exposing a trade-off between flexibility in manipu-
lation through independent sharing with an emphasis on communication for mirrored
sharing. For example, in a calendaring application, users may wish to initially work
with independent systems to understand personal commitments, use a mirrored view
to discuss potential scheduling options, and then a coordinated conclusion to record
the group consensus. Furthermore, it is important for a system to reflect the mode of
sharing to the user, so that they do not form incorrect mental models of the underlying

system. Towards this end, the different services made available through Platform
Composition provide a unified approach to encompassing multiple sharing models,
and provide the user with the ability for independent, coordinated, and mirrored shar-
ing.

System Resource Referencing
Individual resources, such as devices and services, can employ a variety of means to
discover, address, and reference each other in distributed systems. Referencing is im-
portant because it directly effects how users interact with the resources made avail-
able by the system. There are three rough models for resource referencing:

Ad-Hoc: Systems which have never seen each other before can use ad-hoc mecha-
nisms to identify resources. Conversationally, this translates to “use this device”
where a user can select the device from a set of nearby devices, discovered by such
techniques as UPnP, ZeroConf, or Bluetooth wireless scan. Ad-hoc references are
advantageous in that they allow access without requiring prior setup, allowing for
the implicit discovery of new resources, although it can suffer from confusion if
there are many similar resources available.

Familiar: Referring to something as “the one I used before” invokes a familiar refer-
ence, which has been used in the past but is not necessarily well-known. Familiar
references are advantageous in that they provide a mechanism to resolve ambiguity
and complexity introduced by pure ad-hoc references, or ease a-priori set-up re-
quired by well-known references. Most systems will start from an ad-hoc or well-
known foundation and construct familiar references using techniques such as
bookmaking or machine learning as ways to mitigate the associated disadvantages.

Well-Known: Referring to something by a specific name, such as
“fred.smith@mail.com,” represents a well-known reference in that it works unam-
biguously and consistently in all contexts. The disadvantage of well-known refer-
ences is that they require a-priori setup when they are first used and can be difficult
to invoke in dynamic ad-hoc situations; in contrast to ad-hoc systems, well-known
references require explicit discovery of new resources. Well-known references are
commonly used with email and chat-client programs to send messages between
people; also, referring to a specific remote network file-share by machine name or
IP address would constitute a well-known reference.

Similar to Casca, Platform Composition itself does not inherently rely on any given
reference mechanism, although the dynamics of ad-hoc mobile collaboration funda-
mentally starts with ad-hoc references. A challenge with both these systems is how to
limit the scope of ad-hoc discovery to the most interesting or relevant devices: effec-
tively relying on familiar references. Mobile systems can leverage the physical loca-
tion or proximity of devices [19] in order to form associations, i.e., the “physical fa-
miliarity” of a device. Emerging mobile devices are starting to possess new input
capabilities, such as accelerometers, cameras, and Near Field Communication (NFC),
that may be useful in aiding mobile device composition. For example, DACS [7],
bumping objects together [10], Relate [9], Gesture Connect [24], and Elope [25] are
all sensor-based approaches to joining devices together, which could directly mitigate
some of the problems associated with ad-hoc or well-known references. The trade-off

for referencing is between the ease of accessing a new or unfamiliar object using ad-
hoc referencing with a more reliable accessibility for common objects using well-
known referencing.

PLATFORM COMPOSITION
In contrast to the other composition systems mentioned above, Platform Composition
enables users to interact by easily connecting their existing platforms’ services to-
gether. For example, as highlighted in the motivating scenario and Figure 2, a file
share from one device can be made available to another user’s device; alternately, a
user could remotely access the display of another user’s device, allowing them to
jointly view and edit content. This section covers the high-level concept of Platform
Composition, covering the motivation and services that are applicable to pervasive
collaboration applications.

Motivation
The concept of using Platform Composition to support mobile ad-hoc collaboration is
motivated by four main factors: technology advances, end-user benefits, standard ser-
vices, and available applications.

First, current improvements in mobile device processing, storage, and communication
capabilities have created advanced mobile devices that can host significant applica-
tions. Mobile laptop computers are now the mainstay of many corporate environ-
ments, and the processing in some hand-held devices is capable of supporting high-
quality touch-screen interaction; solid-state drives (SSD) and other high-capacity
storage technologies provide ample capacity to store extensive caches of digital me-
dia; while advanced wireless standards such as ultra-wide band (UWB) and
IEEE 802.11n provide the means for high-bandwidth inter-device communication.
These trends present an opportunity in bringing these advances to cooperative work.
Projects such as The Personal Server [36] and Dynamic Composable Computing [37]
have explored how these same trends impact the mobile platforms themselves.

Next, composing systems from several mobile devices has the potential to improve
several aspects of the collaborative user experience, addressing some of the funda-
mental limitations imposed by their small screens and limited I/O capabilities. In-
creasing the total available screen real-estate has been shown to improve group pro-
ductivity by using multiple screens together [8], and also affords new opportunities
for media consumption [30]. Not only do user’s individual devices provide access to
their personal resources, but they provide a readily available platform from which to
access resources on other devices. The theme of orchestrating multiple devices to
support collaboration is common in the research literature, having been addressed by
systems such as Casca [6], iRoom [13], Pebbles [21], and The Display Mirror [22],
among others.

From an application standpoint, there exists a wide variety of single-user applications
that can be utilized for group collaboration, a notion known as collaboration trans-
parency [17]. Platform Composition can directly leverage these existing applications,
instead of relying upon special-purpose collaborative applications. Many previous
systems have focused on collaboration transparency in the context of a single applica-
tion, e.g. intelligent collaboration transparency [16] enables distributed cross-

platform text-editing without application modification. In contrast, Platform Compo-
sition supports transparency at the system level, since it enables users to employ a va-
riety of standard applications to accomplish their task.

Finally, there are several computer industry standards which provide functional ab-
stractions for basic platform services, such as the file system, bit-mapped display, and
socket-based networking. These standards provide a consistent programming model
across diverse hardware platforms and utilize standard communication protocols, such
as TCP/IP, enabling them to operate in distributed environments. Such distributed
systems have been a cornerstone of fixed collaborative setups, which allow people to
work collectively on distributed resources like desktop computers through shared file
systems and remote desktop protocols. Platform Composition capitalizes on this ca-
pability by using these system abstractions as the primary building block supporting
dynamic collaboration on wireless mobile devices.

Platform Services
Figure 4 shows how platform services are orchestrated by Platform Composition to
enable existing applications to work with distributed resources. All these services are
common platform components, with well-defined behaviors and control mechanisms:
virtually every application can access these resources in a standard and consistent
manner. There are three primary system resources supported by the concept:

Clipboard: By sharing the system’s clipboard, users can easily transfer isolated pieces
of information between systems. For example, a user can easily share the URL of a
web page they are looking at by copying it to the clipboard – similarly, they can
easily identify and share a specific image. As a standard system resource, the clip-
board is closely integrated with virtually every application available on standard
windowing systems (although it is not currently pervasive on all small mobile de-
vices). The Remote Clip [20] project explored the impact of clipboard sharing be-
tween a personal mobile device and a desktop PC.

Storage: Groups of files, such as an image collection or current working documents,
can be made available remotely using standard network file-share techniques. For
example, if one user is working on a slideshow, as described in the introductory
scenario, they can share their working directory to provide other users access to the
files. This allows them to directly work with the content; similarly, a supporting
user could make their local image collection available to the main document author
enabling them to easily incorporate the images. Once a storage composition is
formed, files are accessed through applications using their commonly available file
open/save mechanisms. The Sharing Palette [35] and Coda [28] have explored the
impact of storage sharing in distributed collaborative environments.

Display: Visual resources can be easily shared by replicating the user’s visible display
surface: either by remoting, pulling, or extending their display. Remoting their dis-
play to an external screen allows others to easily see (and potentially interact) with
the primary user’s data. Pulling a remote display to the local device enables a re-
mote-control interaction with the other display. While this is fundamentally the
same as pushing a display connection it changes who initiates the connection. Ex-
tending a system’s display to utilize a supporting device enables applications run-

ning on the host system to transparently utilize additional screen real-estate, much
in the same way as would be accomplished by physically attaching a second moni-
tor. Several projects such as The Display Mirror [22], MobiUS, [30], and “The 22
Megapixel Laptop” [31] (among others) have explored the impact of display shar-
ing in a number of different environments.

Additional services, such as the ability to share individual windows provided by Im-
promptu [3], arguably fit into this model as long as they provide a generic capability
that would be available to any application. Sharing input devices, such as keyboards
and mice, has also been incorporated into the system by sharing USB devices over the
network based on commercially available USB-over-IP solutions. Likewise, other
system services, such as dynamic networking, distributed sensing, and processor shar-
ing also fall under the umbrella of Platform Composition, and represent areas for fu-
ture work.

Supporting Platform Collaboration
In contrast to the examples cited under individual services above, Platform Composi-
tion provides an integrated framework from within which to access all these services.
Additionally, since these services represent standard system capabilities, they are
available to most applications without modification. These services present the user
with very familiar mechanisms for sharing data, and they are compatible with virtu-
ally every available application, allowing Platform Composition to easily support
pervasive collaborative activities. The key aspect of the underlying concept is to share
coarse-grain resources in order to support familiar applications, instead of redesigning
applications or trying to adapt applications into a highly constrained design space.

In essence, Platform Composition is creating a distributed logical platform that re-
places the underlying individual pieces of pervasive computing technology. A modern
laptop computer is made up of tightly-coupled storage, display, processing, and I/O

Local Platform

Operating System
O

th
er

Platform Hardware

St
or

ag
e

D
is

pl
ay

C
lip

bo
ar

d

User
App #1

User
App #2

Comp.
Control

Re
m

ot
e

Pl
at

fo
rm

(a
rc

hi
te

ct
ur

al
ly

 si
m

ila
r)

Wireless
Networking

Figure 4: Platform Composition architectural overview. Each symmetric plat-
form is represented as a standard set of services implemented on top of the oper-
ating system and platform hardware. From the applications’ perspective, the un-
derlying system resources appear the same if they are local or remote.

capabilities, while a distributed composed platform provides these same basic re-
sources, except sourced from a diverse set of devices. The potential downside, of
course, is that the distribution process will either become overly confusing or compli-
cated for users, or decrease system effectiveness due to increased communication la-
tencies.

COMPOSITION FRAMEWORK
The Composition Framework prototype presents a concrete implementation of the
Platform Composition concept in order to better to understand its relationship with
higher-level applications, underlying resource sharing services, and the overall user
experience. At its core, the Composition Framework is a distributed message passing
framework that has modules for user interfaces, device/service discovery, and service
integration. The framework exists as a thin middleware layer that is used to orches-
trate service connections among devices; however, once services are made available
through the operating system, the composition interface does not play a role in using
the applications themselves, which are layered directly on the exposed services.

The primary user interface employs a graphical join-the-dots metaphor, depicted in
Figure 5. To effect a connection in the system, the user simply draws a line from the
core service (small circles) to the target device (larger enclosing circles); likewise, in
order to provide the user with feedback on the state of the system active, service con-
nections are represented by directed links between the source service and device. Ser-
vices can be disconnected by dragging a line across the service (metaphorically “cut-
ting” the connection). Users are also able to invoke various configuration and
diagnostic operations through specialized gestures. A system-tray icon is also avail-
able, primarily for use on laptop and desktop systems. The graphical interface is simi-
lar to others that have supported composition for both objects [5][23] and

Figure 5: Join-the-dots graphical user interface (GUI) used to manually create
compositions by sharing resources with a simple line drawing metaphor. This in-
terface has been designed to work well with touch-screen or pen interfaces, and
does not rely heavily on detailed manipulation or textual input.

events [1][15]. Addiontally, the interface provides the ability save and restore pre-
defined compositions, as well as automatically suggesting composition candidates.

The Composition Framework architecture consists of four major components: frame-
work core, user interface, network discovery, and service modules. DBUS, a standard
message passing infrastructure, is used to facilitate communication between the mod-
ules. The core components are implemented in Java, with various specific compo-
nents utilizing a number of other languages and interfaces, as required. The system
supports both Linux and Windows operating systems, and has been used on a variety
of standard computing platforms such as Ultra-Mobile PCs (UMPCs), laptops, desk-
top systems, and projection displays.

Each individual service for sharing a resource is specified by an XML service descrip-
tor file, which encodes basic properties of the service (name, icon, etc.), and provides
details on how to probe, invoke, monitor, and disconnect the service. Some services,
such as storage sharing, are implemented using asynchronous operating-system calls,
while others, such as display sharing, are implemented by invoking a standalone cli-
ent process. Services are handled using an explicit client/server model based on com-
monly available standard systems:

Clipboard sharing is realized using the synergy [29] system, which enables clipboard
and mouse sharing among a group of systems. This system seamlessly integrates
with the system clipboard, providing a virtually transparent mechanism for users to
share information.

Storage sharing is implemented using standard SMB-based storage capability built-in
to Windows and Linux platforms. Automation of standard command-line interfaces
are used to access storage sharing, and the resulting client is presented to the sys-
tem as an integrated drive or folder mount point.

Display sharing is built on the standard VNC protocol, using the standard VNC pro-
tocol [26], supporting multiple client and server implementations. This implemen-
tation allows easy access of the display between systems. Furthermore, on Win-
dows platforms, MaxiVista [11] is used to enable extending a display surface
across multiple devices.

Peripheral sharing utilizes USB Redirector [12] to share USB devices between de-
vices. For example, speakers attached to one device can be used to play music
sourced from another, or a tablet input device wired into a tabletop can be used to
augment traditional laptop input modalities.

These implementations each represent specific examples of how existing technologies
can be used to implement the associated service, and could be easily replaced by al-
ternate implementations if/when they become available.

Evaluation
The Composition Framework has been tested in both a laboratory based experiment
and by the core research team over a period of several months. The laboratory ex-
periment included eighteen participants recruited by convenience sampling from our
corporation as well as personal friends. The participants were evenly distributed

across gender, and 65% were between 20 and 29 years of age and 35% between 30
and 39. The experiment tested a well-structured sequence of tasks involving composi-
tions between three systems. The extended core usage centered around five research-
ers using the system in a typical conference room environment. In both cases, the de-
vices used consisted of a combination of laptops, ultra-mobile PCs (UMPCs), and
desktop systems (attached to either a large-screen display or projector). These experi-
ences have provided a wide range of users’ reactions to the basic concept and allowed
insights into the end-user benefits.

Overall, it is clear that users can relate to and understand the basic concept of Plat-
form Composition, and find the Composition Framework user interface intuitive and
easy to use. Participants from the user study were able to make use of the unified
mechanisms provided by the Composition Framework to manipulate the state of the
services involved in a composition. One user commented that the system was “really
easy to understand, learn and use,” while another said that the GUI was “a good
visualization of what's going on: makes user more comfortable with sharing to know
exactly what's shared and if it shared successfully.”

Routine interactions with groups of up to five people have further revealed insights
into the effectiveness of the system for collaborative tasks. The basic ad-hoc discov-
ery mechanism and user interface have shown to be useful in lowering the barrier for
initiating multi-device collaborative tasks. Based on this ease of sharing, users were
able to export documents for collaboration in group settings, instead of requiring
peers to gather around a single monitor or simply “talking to” a relevant document.
The available alternative was generally using a standard VGA cable for projection, or
emailing the document to all parties involved. In essence, users were able to share and
engage their coworkers without as much interference from the underlying technology.
One interesting use practice emerged as a result of being able to easily share two re-
sources from the unified interface, discussed more fully in the next section.

Several conceptual difficulties with service sharing were observed relating to display
and storage sharing. The most pronounced confusion was experienced with display
sharing, where users would quickly become confused about which display was shown
where – since many computer desktops looks very similar, and the physical separation
of screens was no longer effective at differentiation. Similarly, users were somewhat
confused at the difference between an underlying shared directory and the on-screen
window that represented the share: the mistaken assumption was that closing the win-
dow prevented access to the underlying data. Accordingly, users commented “All the
connection lines can cause confusion,” underscoring some of the difficulty with com-
prehending resource sharing.

Another deficiency apparent with shared services as they stand is the inability for a
user to control a remote client, when they push a local service remotely: e.g., if they
share their display, making it available on another computer. The basic problem is
that client/server programs typically assume interaction from the client side, and gen-
erally don’t support server-side control of the client. Specifically, the case of remote
client control for VNC was an issue, since a user could push their screen to a remote
display, but could not position, scroll, or maximize/minimize the client window.
There are a number of immediate ways around this problem, specifically using an-

other VNC connection to control the remote display or remoting a mouse or other in-
put device over USB, but these solutions only offer limited relief to the underlying
problem. This becomes more relevant in a collaborative environment because users
may need to control the client to mediate limited client resources: e.g., switching be-
tween shared displays or tiling clients appropriately.

Observational Contributions
Based on experiences with the Composition Framework, described above, Platform
Composition contributes a number of powerful properties to collaborative environ-
ments, even though it is constructed using a number of standard services and proto-
cols. First, since users can easily create new connections to facilitate sharing, it be-
comes feasible for them to create multiple connections while previously they might
only have created one due to the perceived overhead of interaction. Second, the inter-
action of standard system services with operating environments and applications al-
lows users to fluidly adjust their composition space to meet immediate group goals.
Essentially, these contributions stem from the lower bar for composition operations
which otherwise are too onerous for users to consider in the midst of dynamic group
interaction – a primary design goal of the system.

As mentioned above, empowering users with a unified and easy-to-use sharing inter-
face crystallized new usage patterns that were not previously present. For example,
when showing a presentation to a small group the most straightforward way to realize
a composition system is to enter presentation mode on the local device and then create
a composition with the projector (assuming the existence of a dedicated projection
server). However, it was discovered that utilizing storage sharing to push a document
to a remote display and then pull the remote display locally allowed for increased
functionality. This shift allowed a user to effectively present a document to a group of
people without unnecessarily exposing their system to the audience, e.g., their local
screen was still private, and only the intended document was shared, although under
their control. Furthermore, this sharing approach enabled other users to directly access
the presentation locally on personal devices and could flip ahead or review pages, a
usage not possible with a simple projection or display-service export. Another advan-
tage was that the presentation program (PowerPoint) executed locally and therefore
did not incur any display artifacts for the audience resulting from display sharing,
typically present for animations and embedded videos. While this example utilizes in-
frastructure support, the shift in usage highlights the power of Platform Composition.

Since they are built on common existing standards, platform services can be fluidly
configured in the system without significantly interfering with individual applications
or the user’s overall operating environment. Within the wealth of available platform
services, sometimes it will be better to share individual files using the clipboard, other
times they might want to access a complete file share, and sometimes they would
want to interact using display sharing. Since Platform Composition utilizes resource
sharing that is intimately integrated with standard system interfaces, users can quickly
switch between modalities using familiar techniques like iconifying a window, press-
ing a keyboard shortcut, or drag-and-drop between windows. Once the initial connec-
tions are set-up, the composition mechanism itself does not play an active part in in-
teractions. This fluidity of accessing sharing models transcends individual

applications and allows users to share their resources in a manner that matches the
sub-task of the overall group.

Satisfying another design goal, the Composition Framework was highly successful in
supporting different applications. Photograph sharing was easily accomplished using
built-in photo viewers and by sharing photographs through display sharing. Existing
audio and video playback applications, such as Real Player or Windows Media
Player, could easily operate on data exported through shared drives. Furthermore,
Power Point easily ran in the environment and was used for shared presentations,
while accompanying storage sharing was able to share the underlying presentation it-
self. However, the underlying services were not able to support video over a display-
sharing channel, and interactions with more advanced applications such as Photoshop
suffered from network latencies, both for the underlying storage and display sharing.

FUTURE WORK
Based on the concepts outlined in the previous sections, a number of avenues for fu-
ture work become apparent. First, a more comprehensive evaluation of the various
platform sharing techniques and how they interact would provide valuable additional
insight on how sharing is realized using Platform Composition.

In addition to the individual underlying platform services to enable resource sharing,
there is additional state present in the system that could be used to facilitate interac-
tions among users. For example, data from the process table or files held open by pro-
grams, such as an image editor, could be used to provide a remote user with a more
precise window into the first system’s exported storage share (by opening up a win-
dow directly to a sub-folder in the larger hierarchy, instead of simply to the root of the
storage share). Similarly, if one user is browsing a specific web page and would like
to share it with their colleague, state sharing would allow another user to easily access
the same page (currently, this can be accomplished by sharing the clipboard and using
it to transfer the URL, but this introduces another step).

Currently, the security model employed by the Composition Framework relegates the
security policy to individual services. Integrating authentication and access control
with the core system has the advantage of presenting a unified front to the user as well
as, similar to above, enabling more seamless switching between services. For exam-
ple, successful authentication with one service might imply implicit authentication to
another, reducing the number of unnecessary steps towards the final composition. Pri-
vacy falls into a similar situation where it is left up to social conventions or the pre-
existing system configuration to manage users’ privacy, an arrangement that could
possibly benefit from a more managed approach.

As mentioned previously, an interesting aspect of resolving ad-hoc references is util-
izing physical interfaces to invoke compositions – towards that end, realizing a multi-
modal interface, combining elements of an on-screen, physical, and speech interface,
offers several compelling properties. One complaint with the GUI interface was
“When my hand is not free, I cannot use GUI. I have to rely on mouse a lot to use
GUI, which is inconvenient in many environment,” highlighting another problem with
traditional on-screen interaction. Physical interfaces such as Near Field Communica-
tion (NFC) [24,23] can partially address the security problem between devices ena-

bling physical access-based security policies. Furthermore, a speech interface would
be applicable for small devices since it would have a reduced dependence on the
screen. Overall, both physical and speech interfaces are attractive in a social environ-
ment because they provide transparency: one user can easily see or hear what another
is doing.

Along these lines, recommendation systems can be used to help the user better decide
which services to compose together. Such a module could look at the available de-
vices and service, currently running applications, people involved or nearby, and
other sources of context to suggest a specific sharing configuration. For example, if
two colleagues often and typically share their storage and display when they are to-
gether, it would be natural for the system to recommend or automate the process.

CONCLUSIONS
The Composition Framework prototype has demonstrated the effectiveness of the
Platform Composition concept, exploring how it fits into the framing of the Pervasive
Collaboration application domain. Unlike many other collaborative systems, the nec-
essary enabling concepts manifest themselves in a very lightweight manner, removing
many potential barriers-to-adoption for platform-level composition. The basic princi-
ple of service composition, combined with an understanding of the spectrum of appli-
cation sharing modes, makes Platform Composition well suited to support collabora-
tive work on emerging mobile devices, and further integrating them with existing
infrastructure to build effective systems that support work practice.

They key contributions outlined in this paper are a deeper understanding of collabora-
tive systems by first providing a design space within which to place such systems, and
then identifying several non-obvious benefits of the Platform Composition approach.
These contributions highlight how emerging pervasive computing environments
based on common mobile devices are capable of supporting highly dynamic group
usage models. Furthermore, based on these experiences, a number of observed chal-
lenges highlight ways that existing pervasive systems can be evolved to better support
collaborative usage models.

REFERENCES
1. Ballagas, R., Szybalski, A., and Fox, A. 2004. Patch Panel: Enabling Control-

Flow Interoperability in Ubicomp Environments. In Proceedings of the 2nd int.
Conf. on Pervasive Computing and Communications

2. Bardram, J. 1998. Designing for the dynamics of cooperative work activities. In
Proceedings of the 1998 ACM Conf. on Computer Supported Cooperative Work

3. Biehl, J. T., Baker, W. T., Bailey, B. P., Tan, D. S., Inkpen, K. M., and Czerwin-
ski, M. 2008. Impromptu: a new interaction framework for supporting collabora-
tion in multiple display environments and its field evaluation for co-located soft-
ware development. In Proc. of the 26th Conference on Human Factors in
Computing Systems

4. Clawson, J., Voida, A., Patel, N. and Lyons, K. Mobiphos: A collocated-
synchronous mobile photo sharing application. In Proc of MobileHCI 2008.

5. Ducheneaut, N., Smith, T. F., Begole, J. "., Newman, M. W., and Beckmann, C.
2006. The orbital browser: composing ubicomp services using only rotation and
selection. In CHI '06 Extended Abstracts

6. Edwards, W. K., Newman, M. W., Sedivy, J. Z., Smith, T. F., Balfanz, D., Smet-
ters, D. K., Wong, H. C., and Izadi, S. 2002. Using speakeasy for ad hoc peer-to-
peer collaboration. In Proc. of the 2002 CSCW

7. Egi, H., Ohsuga, N., Nakada, A., Shigeno, H., and Okada, K. 2004. DACS: Dis-
tance Aware Collaboration System for Face-to-Face Meetings. In Proc. of the
2004 Symposium on Applications and the internet-Workshops

8. Forlines, C., Shen, C., Wigdor, D., and Balakrishnan, R. 2006. Exploring the ef-
fects of group size and display configuration on visual search. In Proceedings of
the 2006 20th Conference on CSCW

9. Hazas, M., Kray, C., Gellersen, H., Agbota, H., Kortuem, G., and Krohn, A. 2005.
A relative positioning system for co-located mobile devices. In Proceedings of the
3rd international Conference on Mobile Systems, Applications, and Services

10. Hinckley, K. 2003. Distributed and local sensing techniques for face-to-face col-
laboration. In proc. of the 5th international Conference on Multimodal interfaces

11. http://www.maxivista.com/
12. http://www.incentivespro.com/usb-redirector.html
13. Johanson, B. and Fox, A. 2004. Extending tuplespaces for coordination in interac-

tive workspaces. Journal. System. Software.
14. Johanson, B. Ponnekanti, S., Sengupta, C., Fox, A.: Multibrowsing: Moving Web

Content across Multiple Displays. In Proc. Ubicomp ’01. Springer, 2001.
15. Johanson, B., Hutchins, G., Winograd, T., and Stone, M. (2000) PointRight: Ex-

perience with Flexible Input Redirection in Interactive Workspaces. Proc. of UIST
16. Juwon Ahn, Jeffrey S. , Pierce, Jeffrey S. SEREFE: Serendipitous File Exchange

Between Users and Devices; Proceedings of the 7th international conference on
Human

17. Lauwers, J. C. and Lantz, K. A. 1990. Collaboration awareness in support of col-
laboration transparency: requirements for the next generation of shared window
systems. In Proc. of the SIGCHI Conference on Human Factors in Computing
Systems: Empowering People

18. Li, D. and Li, R. 2002. Transparent sharing and interoperation of heterogeneous
single-user applications. In Proceedings of the 2002 ACM CSCW

19. Lyons, Kent; Want, Roy; Munday, David; He, Jiasheng; Sud, Shivani; Rosario,
Barbara; Pering, Trevor: “Context–Aware Composition”, HotMobile 2009.

20. Miller, R. C. and Myers, B. A. 1999. Synchronizing clipboards of multiple com-
puters. In Proceedings of the 12th Annual ACM Symposium on User interface
Software and Technology

21. Myers, B. A., Stiel, H., and Gargiulo, R. 1998. Collaboration using multiple PDAs
connected to a PC. In Proceedings of the 1998 ACM Conference on Computer
Supported Cooperative Work

22. Newman, M. W., Ducheneaut, N., Edwards, W. K., Sedivy, J. Z., and Smith, T. F.
2007. Supporting the unremarkable: experiences with the obje Display Mirror.
Personal Ubiquitous Computing

23. Newman, M., Elliott, A., and Smith, T.. Providing an Integrated User Experience
of Networked Media, Devices, and Services Through End-User Composition. In
proc. of the int. conf. on Pervasive Computing, 2008

24. Pering, T., Anokwa, Y., and Want, R. 2007. Gesture connect: facilitating tangible
interaction with a flick of the wrist. In Proceedings of the 1st international Confer-
ence on Tangible and Embedded interaction

25. Pering, T., Ballagas, R., and Want, R. 2005. Spontaneous marriages of mobile de-
vices and interactive spaces. Commun. ACM

26. Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A. 1998. Virtual
Network Computing. IEEE Internet Computing

27. Roseman, M. and Greenberg, S. 1996. TeamRooms: network places for collabora-
tion. In Proceedings of the 1996 ACM Conference on CSCW

28. Satyanarayanan, M. 2002. The evolution of Coda. ACM Trans. Comput. Syst. 20, 2
(May. 2002)

29. Schoeneman, C. 2003. Control everything from one place with Synergy. Linux J.
2003, 108 (Apr. 2003).

30. Shen, G., Li, Y., and Zhang, Y. 2007. MobiUS: enable together-viewing video ex-
perience across two mobile devices. In proc. of the 5th international Conference
on Mobile Systems, Applications and Services

31. Stødle, D., Bjørndalen, J. M., and Anshus, O. J. 2007. The 22 megapixel laptop. In
Proceedings of the 2007 Workshop on Emerging Displays Technologies: Images
and Beyond: the Future of Displays and interacton

32. Streitz, N. , Geißler J., Holmer, T., Müller-Tomfelde, C., Reischl W., Rexroth P.,
Seitz P., and Steinmetz R. i-LAND: an interactive landscape for creativity and in-
novation. In Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 120–127. ACM New York, NY, USA, 1999.

33. Szentgyorgyi, C., Terry, M., and Lank, E. 2008. Renegade gaming: practices sur-
rounding social use of the Nintendo DS handheld gaming system. In Proceeding of
CHI 2008

34. Teege, G. 1999. Users as Composers: Parts and Features as a Basis for Tailorabil-
ity in CSCW Systems. Computer Supported Cooperative Work (Oct. 1999).

35. Voida, S., Edwards, W., Newman, M. W., Grinter, R. E., and Ducheneaut, N.
2006. Share and share alike: exploring the user interface affordances of file shar-
ing. In Proceedings of the 2006 CHI

36. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light, J. 2002.
The Personal Server: Changing the Way We Think about Ubiquitous Computing.
In proc. of the 4th int. conf. on Ubiquitous Computing

37. Want, R., Pering, T.. Sud, S., Rosario, B., 2008. Dynamic Composable Comput-
ing, In proc. of HotMobile 2008.

