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Abstract—In this paper, we investigate the training problem of
wireless local area networks (WLANs) with downlink multi-user
multiple input multiple output (DL MU MIMO) capability. We
extend the 802.11 MAC protocol and propose a few training
protocols at the MAC layer to support DL MU MIMO. We
provide a capacity analysis based on measurement results from
an 802.11n systems, evaluate the overhead of these training
protocols, and compare the performance of DL MU MIMO with
that of a beam-forming (BF) based approach. Through simulation
studies, we find that at high SNR and with implicit training,
the DL MU MIMO mechanism provides significant performance
gain over the BF based approach. Furthermore, our capacity
analysis and simulation study also show that it is critical to define
appropriate training intervals based on antenna configuration,
channel mobility, and CSI feedback overhead.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) communication
techniques have been extensively studied for next generation
cellular networks and has been deployed in wireless local
area networks (WLANs) using the IEEE 802.11n technology.
A MIMO system takes advantage of two types of gains,
spatial diversity gain and spatial multiplexing gain [1]. Spatial
diversity is used to combat severe fading and can improve
reliability of wireless links by carrying duplicate copiesof the
same information along multiple antennas. This is particularly
useful for compensating against the effect of node mobility.
Spatial multiplexing creates an extra dimension in spatial
domain, which can carry independent information in multiple
data streams. It has been shown that in a MIMO system with
N transmit andM receive antennas, capacity grows linearly
with min{N, M} [2].

Recent results show that similar capacity scaling applies
when an N-antenna access point (AP) communicates with M
users simultaneously [1]. Such a multi-user (MU) MIMO sys-
tem has the potential to combine the high capacity achievable
with MIMO processing with the benefits of multi-user space-
division multiple access. This technology is being considered
for the next generation of 802.11 (802.11ac). Particularly,
we’re interested in downlink (DL) MU MIMO systems, where
an AP can transmit to multiple users simultaneously.

There has been prior work that studied the benefit of DL MU
MIMO techniques in WLANs [3]–[5]. However, the important
problems of training protocol design an training overhead for
DL MU MIMO systems have not been addressed in these
works. In [6], a training mechanism is adopted with channel
state information (CSI) feedback. Because the feedback is

transmitted over a cable instead of over an air interface, the
training overhead is not taken into consideration in this work.
In [7], the authors provide a comprehensive analysis of a
few DL MU MIMO precoding techniques and characterize
the degradation in the performance of transmitter optimization
schemes with respect to delayed CSI feedback. However, this
work does not consider exploiting MAC support for DL MU
MIMO training.

In this paper, we investigate the training problem in WLANs
with DL MU MIMO capability. The main contributions of the
paper are as follows. First, we extend the 802.11 CSMA/CA
based medium access protocol and propose multiple training
mechanisms at the MAC layer to support DL MU MIMO.
Second, based on measurement results taken from an 802.11n
network, we study the capacity degradation of DL MU MIMO
with respect to channel state information (CSI) feedback delay.
Third, through OPNET simulations, we evaluate the overhead
of training protocols, and compare the performance of DL MU
MIMO with that of transmit beamforming (TxBF).

Through simulation studies, we find at high SNR and with
implicit training, the DL MU MIMO mechanism provides
significant performance gain over the BF based approach.
Furthermore, our capacity analysis and simulation study also
show that it is critical to define appropriate training intervals
based on antenna configuration, channel mobility, and CSI
feedback overhead.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model. The extended MAC
protocol and the proposed training mechanisms are discussed
in Section III. We present capacity analysis of DL MU MIMO
versus CSI feedback delay in Section IV. Our simulation study
is presented in Section V. Section VI concludes this paper and
discuss future directions.

II. SYSTEM MODEL

We consider an enhancement to an IEEE 802.11n system
where the AP hasN transmit andN receive antennas. Assume
the AP transmits simultaneously to different stations (STAs) in
the same basic service set (BSS). WithN transmit antennas,
the AP can transmit a total ofN spatial streams. TheseN
streams can be distributed across a maximum ofN STAs.

When the AP transmits different streams to multiple STAs,
interference from streams intended for one STA will cause
interference to the other STAs. This is presented in (1), where
Yi is the received signal at theith STA (with dimensions
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NRx × 1), Xi is the transmitted streams to theith STA (with
dimensionsNss × 1), Nss is the number of spatial stream
for each STA,Hi is the channel between the AP and theith
STA (with dimensionsNRx ×NTx), Wi’s are weights applied
at the transmitter (with dimensionsNTx × Nss), ρ is the
received power,M is the number of STAs,Zi is addition white
Gaussian noise at theith STA (with dimensionsNRx×1), NRx

is the number of receiving antennas at an STA, andNTx is
the number of transmitting antennas at the AP.

The signalHiWjXj received byYi causes interference
when decoding its streamsXi when i 6= j. The AP can
mitigate this interference with intelligent beamforming tech-
niques [8]. For example, if we select weights such that
HiWj = 0 wheni 6= j, then the interference from other STAs
is canceled out.

A simple linear processing approach is to precode the data
with the pseudo-inverse of the channel matrix [8]. To avoid the
noise enhancement that accompanies zero forcing techniques,
the minimum mean square error (MMSE) precoding can be
used instead. To describe this approach, we first present the
entire system model including all STAs as follows.
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The MMSE precoding weights are then given as follows.
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, (3)

where Φz is the noise covariance matrix andH† is the
Hermitian ofH .

Interference cancellation techniques can be implemented
in the receiver to further reduce degradation from multiple
access interference. When the receiving STA has more receive
antennas than the number of spatial streams it intends to
received, the extra antennas can be used to cancel out the
spatial streams intended for other STAs. If channel state
information (CSI) is known for the channel dimensions of
the interference streams (i.e.,HiWj), the CSI can be used to
null interference in an MMSE receiver. This type of equalizer
structure is given byGiYi, where
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To compare DL MU MIMO to single user 802.11n TxBF,
we assume that the transmitter weights are generated using
the eigenvectors from singular value decomposition (SVD).
Though a specific weighting scheme is not defined in 802.11n,
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Fig. 1. CSMA/CA based DL MU MIMO protocol with polled response.

SVD yields maximum likelihood performance with a simple
linear receiver [9]. The system equation with single user TxBF
is expressed as,

Y = ρHV X + Z. (5)

where the SVD ofH is UΣV . When the AP has more
antennas than transmitted spatial streams, the TxBF gain can
be substantial even when the receiver has the same number of
receive antennas as spatial streams.

III. T RAINING PROTOCOLS FORDL MU MIMO

In this section, we first describe a CSMA/CA based protocol
for DL MU MIMO WLANs. We then present the proposed
training mechanisms for DL MU MIMO systems.

A. CSMA/CA Based DL MU MIMO MAC Protocol

The IEEE 802.11 MAC protocol is based on carrier-
sense multiple access with collision avoidance (CSMA/CA).
We extend the 802.11 protocol to support DL MU MIMO
transmission. An AP contends for the medium using the
normal 802.11 enhanced distributed channel access (EDCA)
procedure. Once an STA wins the channel, the AP transmits
multiple packets that are destined for different STAs simulta-
neously. Two response mechanisms can be used for the AP
to collect acknowledgements from STAs. Fig. 1 illustrates a
polled response mechanism, where the AP transmits block
ACK request (BAR) frame to each destination STA in turn
to solicit block ACKs (BAs).

Fig. 2 illustrates a scheduled response mechanism where
the AP includes an offset in the frame header. The offset
defines when a destination STA can transmit back a BA. After
successfully receiving a data frame from the AP, each STA
transmits a BA, following the offset defined in the header
of the received frame. In one option, BAs from different
STAs are separated by short inter-frame space (SIFS); in
another option, BAs are separated by reduced inter-frame
space (RIFS). Because RIFS is 2µs and SIFS is 16µs,
scheduled response with RIFS has smaller MAC overhead than
scheduled response with SIFS.

The APs backoff procedure for a MU transmission is the
following. If a response is received from at least one of the
STAs address in the DL MU MIMO burst, the AP assumes
there is no collision. If a response is not received from any of
the STAs address in the burst, then the AP assumes a collision
and initiates exponential backoff. The flow chart of the AP’s
backoff procedure is illustrated in Fig. 3.
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Fig. 2. CSMA/CA based DL MU MIMO protocol with scheduled response.

SDMA transmission

Is there a packet failure?

CW[AC]=(CW[AC]+1)*2-1

CW[AC]= CWmin[AC]
Switch off RTS/CTS

Backoff

Backoff

Was RTS/CTS on?

Switch on RTS/CTS Lower data rate for the STA

Is backoff counter zero?

Yes

No

No

Yes

No

Yes

Have all packets failed?
No

Yes

Drop failed packets that have 
reached max retry

CW[AC]= 
CWmin[AC]

SDMA transmission

Is there a packet failure?

CW[AC]=(CW[AC]+1)*2-1

CW[AC]= CWmin[AC]
Switch off RTS/CTS

Backoff

Backoff

Was RTS/CTS on?

Switch on RTS/CTS Lower data rate for the STA

Is backoff counter zero?

Yes

No

No

Yes

No

Yes

Have all packets failed?
No

Yes

Drop failed packets that have 
reached max retry

CW[AC]= 
CWmin[AC]

�

�

�

�

Fig. 3. Flow chart of the AP backoff procedure.

B. Training Protocols

Following the design philosophy of response mechanisms
for DL MU MIMO, we propose two training protocols: polled
training and scheduled training. As shown in Fig. 4, with
the polled training mechanism, the AP transmits a Request
frame to each STA. Upon receiving a Request frame, an STA
replies with a Reply frame. As shown in Fig. 5, utilizing the
scheduled training mechanism, the AP transmits a Request
frame, containing a schedule that determines when each STA
can transmit a response. Upon receiving the Request frame
with a schedule, an STA transmits a Reply frame following
the offset indicated in the Request frame.

Depending on whether the Channel State Information (CSI)
is calculated by the transmitter or the receiver, there are two
training mechanisms: i) training with implicit feedback orii)
training with explicit feedback. When training with implicit
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Fig. 4. Polled training mechanism.s
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Fig. 5. Scheduled training mechanism.
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Fig. 6. Implicit feedback (polled).

feedback is utilized, the AP requests a sounding frame from
an STA. The sounding frame contains a few pre-defined Long
Training Fields (LTFs) that are known to both the transmitter
and the receiver. Ideally enough LTFs are sent to sound the
full dimensionality of the channel. The sounding frame is
used by the AP to estimate CSI. Based on the estimated
CSI, the AP can precode the DL MU MIMO data. Figs. 6
and 7 illustrate polled and scheduled training with implicit
feedback. Note that to reduce training overhead, the training
frames can be combined with data communication. In Fig. 6,
the AP transmits one Aggregated MAC Protocol Data Unit
(A-MPDU) intended for each destination STA. The AP can
indicate training requested (TRQ) in each A-MPDU or in
the block ack request (BAR) frame by setting the TRQ bit.
Upon receiving the BAR frame that contains a TRQ bit, an
STA replies with a block ack (BA) immediately followed by
a sounding frame.

Instead of transmitting a separate sounding frame, which
often is a Null Data Packet (NDP), STAs can also combine
the sounding LTFs with a data frame. Such a frame is called a
staggered sounding frame. Normally an LTF is transmitted per
spatial stream to decode the data. With staggered sounding,
additional LTFs are transmitted in the preamble in order to
sound the additional channel dimensions.

When training with explicit feedback is utilized, the AP
transmits the sounding frame and relies on the STAs to send
back CSI feedback. The CSI feedback includes the signal-to-
noise ratio (SNR) measured at each of the receiving chain
and CSI matrix for each subcarrier. Therefore, the training
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Fig. 7. Implicit feedback (scheduled).
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Fig. 9. Explicit feedback (scheduled).

overhead of explicit feedback is proportional to the total
number of Tx antennas, the total number of Rx antennas, and
the number of subcarriers.

Fig. 8 shows an example where the AP transmits A-MPDUs
with staggered LTFs as sounding frames. Upon receiving the
sounding frame, each STA replies with its measured CSI
feedback. The AP can also transmit an NDP sounding frame
after the A-MPDU transmission, as illustrated in Fig. 9. Note
that the polled training mechanism can also be combined with
explicit feedback. They are omitted here for simplicity.

In some implementations, it may take some time for an
STA to compile the CSI feedback frame. Our proposed train-
ing mechanism is flexible enough to accommodate delayed
feedback as shown in Fig.10.

IV. CAPACITY VS. FEEDBACK DELAY

A key parameter in the overall throughput of a closed-
loop feedback system is the feedback rate and the overhead
incurred by such feedback. The motion or Doppler in the
environment will cause the channel to change during the
interval between measurement of the CSI and application of
weights on transmission. Different transmit weighting schemes
will have different degrees of sensitivity to these environmental
changes, which will dictate the feedback rate.

In [10], measurement results were captured in an 802.11n
test bed deployed on one floor of an indoor office environment.
Detailed information regarding the office environment, thetest
bed setup, and the conducted experiments can be found in [10].
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Fig. 10. Explicit feedback (delayed).

Using these measurements, TxBF capacity gain was computed
as a function of feedback delay. Analysis demonstrated thatthe
majority of the gain was maintained even with 100 msec of
feedback delay. Therefore, we use 100 msec in the simulations
for the training interval for TxBF.

With DL MU MIMO, aging of the CSI causes a mismatch
between the precoding weights and channel resulting in multi-
ple access interference. Due to this affect, DL MU MIMO will
be more sensitive to changes in the channel and will require
more frequent updates of the CSI.

To determine the appropriate training interval for the DL
MU MIMO simulations, we process a subset of the measure-
ments collected in [10]. A semi-analytic capacity formulation
is used to compute capacity, as described in [9]. The expres-
sion for the mean square error (MSE) at the receiver is

JM×M =
ρ

M
GHeffH∗

effG∗ + GΦZG∗ −

2

√

ρ

M
Re{GHeff} + I, (6)

where Heff is the effective channel matrix including the
delayed MMSE precoding weights from (3),H∗

eff is the
conjugate transpose ofHeff , ΦZ is the noise covariance
matrix, I is the identity matrix from the signal covariance,
G is the MMSE interference cancellation equalizer from (4),
andM is the number of data streams across all the STAs.

The output SNR for theith data stream for MMSE is given
by

SNRi = (1 − Ji)/Ji, (7)

whereJi is theith diagonal element of the MSE matrix given
in (6). The formula for capacity based on output SNR is

C =

M
∑

i=1

log
2
(1 + SNRi). (8)

The DL MU MIMO capacity results for a system with an
AP with three transmit antennas and two STAs are given in
Fig. 11. In the figure there are two curves, one modeling
capacity when the STAs have a single receive antenna and
the other curve when the STAs two receive antennas. In both
cases a single stream is transmitted to each STA and the SNR
at the receiver is about 39dB. Fig. 11 illustrates that if the
number of Rx antenna at an STA is more than the number
of spatial streams destined for the STA and the number of
transmit antennas is more than the total number of spatial
streams, the capacity of DL MU MIMO does not degrade
much with an increase in CSI feedback delay. However, if
the above conditions are not completely satisfied, the capacity
may decrease significantly when the CSI feedback is delayed.

Similar results are provided in Fig. 12 for a system with
three STAs. In this scenario, the AP transmits a total of
three streams, one to each STA. The SNR at the receiver is
about 34dB. Fig. 12 shows that with three different antenna-
client configurations, two configurations show significant per-
formance degradation with delayed CSI feedback, whereas one
configuration, i.e. three Rx-antennas three clients, performs
well even when the CSI feedback is delayed by 30 to 40ms.
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Fig. 11. DL MU MIMO capacity with regard to feedback delay (with 2
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Fig. 12. DL MU MIMO capacity with regard to feedback delay (with 3
STAs).

In both sets of results, the sensitivity to delay and aging
of the CSI is highly dependent on the number of transmitting
antennas at the AP, the number of receiving antennas of the
STAs and the interference cancellation ability of the STAs.
With minimal interference cancellation, the capacity signifi-
cantly degrades within 5 msec. However, with extra receive
antennas at the STA, only a little degradation is experienced
after 40 msec. Therefore in the DL MU MIMO simulations
presented in Section V, we model the system performance
with a range of trainings intervals, varying from 5ms to 40ms.

V. SIMULATION STUDY

Through OPNET simulations, we evaluate the saturation
throughput of a DL MU MIMO system with different training
protocols over a 20MHz channel. We compare the performance
of DL MU MIMO with that of TxBF. A system’s saturation
throughput is defined as the combined throughput achieved
at the top of the MAC layer when all nodes in the systems
are fully loaded at all times. Our simulation utilizes a typical
wireless LAN topology, where there is one AP equipped with
four antennas and three STAs each of which is equipped with

TABLE I
SIMULATION PARAMETERS

Parameter (unit) Value Parameter (unit) Value

DL MU MIMO data 65 aSlotTime (µs) 9

rate (Mbps)

BF data Rate (Mbps) 130 aSIFSTime (µs) 16

Training data rate (Mbps) 39 BA size (byte) 32

Control rate (Mbps) 24 CTS (byte) 14

Max A-MPDU size (byte) 64,000 RTS (byte) 20

MPDU size (byte) 1,500 CWmin 7

TXOP duration (ms) 3 CWmax 63

Training interval for 5, 10, Training interval 100

DL MU MIMO (ms) 20, 40 for TxBF (ms)

two antennas. In the simulation, STAs use MAC frame aggre-
gation schemes, such as A-MPDU, and multiple transmissions
in one transmit opportunity (TXOP). Simulation parameters
are defined in Table 1.

Our measurement results show that to achieve reasonable
DL MU MIMO capacity, an STA needs to implement in-
terference cancellation techniques necessitating more receive
antennas than received spatial streams. Therefore in the simu-
lation, the AP only transmits one spatial stream (SS) to each
STA with two antennas. However when TxBF is utilized, each
STA can receive two SSes. Because STAs are placed close to
the AP, on average the achievable signal-to-noise ratio (SNR)
at each receiver is at least 30dB. The simulation assumes
that the channel aging effect is negligible within the same
interval. For implicit feedback, the number of LTFs for the
sounding frame is the same as the sounded spatial streams.
For explicit feedback, the CSI feedback sent back from STAs
is proportional to the total number of Tx antennas, the total
number of Rx antennas, and the number of subcarriers.

We first compare the saturation throughput of DL MU
MIMO with that of TxBF when implicit training mechanism is
utilized. Fig. 13 shows that DL MU MIMO with polled train-
ing protocol achieves 45% higher saturation throughput than
the TxBF protocol whereas DL MU MIMO with scheduled
training protocol achieves 50% higher saturation throughput
than the TxBF protocol.

We then evaluate the training overhead of explicit CSI
feedback on the performance of DL MU MIMO. Note that the
training interval of TxBF scheme is fixed to 100ms because
TxBF is not very sensitive to CSI feedback delay [10]. Fig. 14
illustrates a case when the AP has four Tx antennas, each
STA has two Rx antennas, and the AP can transmit a DL
MU MIMO burst simultaneously to three STAs. In this case,
when the training interval increases from 5ms to 40ms, the
saturation throughput of DL MU MIMO with polled training
or scheduled training mechanism improves by 15%.

Fig. 15 illustrates a case when the AP has eight Tx antennas,
each STA has two Rx antennas, and the AP can transmit a
DL MU MIMO burst simultaneously to four STAs. In this
case, due to the high training overhead, the performance of
DL MU MIMO is much more sensitive to the training interval.
When the training interval increases from 5ms to 40ms, the
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Fig. 13. Performance Comparison of DL MU MIMO and TxBF with implicit
feedback.
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Fig. 14. Saturation throughput vs. training interval, withexplicit feedback.
The AP has four Tx antennas and there are three STAs, each withtwo Rx
antennas.

saturation throughput of DL MU MIMO with polled training
or scheduled training mechanism improves by 40%. Note that
the simulation assumes that channel aging effect is negligible
within the same training interval. In reality, depending onthe
antenna configuration and channel mobility, the performance
of DL MU MIMO degrades when there is CSI feedback delay
as shown in Figs. 11 and 12.

VI. CONCLUSION AND FUTURE WORK

We have proposed and evaluated multiple training protocols
for supporting DL MU MIMO in WLANs. Capacity analysis
based on measurement data shows that the configuration of
Tx/Rx antennas and the number of spatial streams have a
profound impact on DL MU MIMO capacity and channel
aging. Simulation results show that at high SNR and when AP
has four Tx antennas, DL MU MIMO achieves 50% higher
saturation throughput than TxBF. Furthermore, the training
overhead with explicit feedback is non-negligible for DL
MU MIMO systems, esp. when the AP has eight antennas.
Therefore, a training interval needs to be carefully chosen
based on channel mobility, antenna configurations, and CSI
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Fig. 15. Saturation throughput vs. training interval, withexplicit feedback.
The AP has eight Tx antennas and there are four STAs, each withtwo Rx
antennas.

feedback overhead. For future work, we plan to develop a
joint analysis of antenna-client configurations, channel aging,
and CSI feedback overhead and provide recommendations for
choosing appropriate training intervals.
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